These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 33859160)

  • 1. Spontaneous and stimulated electron-photon interactions in nanoscale plasmonic near fields.
    Liebtrau M; Sivis M; Feist A; Lourenço-Martins H; Pazos-Pérez N; Alvarez-Puebla RA; de Abajo FJG; Polman A; Ropers C
    Light Sci Appl; 2021 Apr; 10(1):82. PubMed ID: 33859160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free Electron-Plasmon Coupling Strength and Near-Field Retrieval through Electron Energy-Dependent Cathodoluminescence Spectroscopy.
    Akerboom E; Di Giulio V; Schilder NJ; García de Abajo FJ; Polman A
    ACS Nano; 2024 May; 18(21):13560-13567. PubMed ID: 38742710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale Visualization of a Photoinduced Plasmonic Near-Field in a Single Nanowire by Free Electrons.
    Zheng D; Huang S; Zhu C; Xu P; Li Z; Wang H; Li J; Tian H; Yang H; Li J
    Nano Lett; 2021 Dec; 21(24):10238-10243. PubMed ID: 34860026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lorentz microscopy of optical fields.
    Gaida JH; Lourenço-Martins H; Yalunin SV; Feist A; Sivis M; Hohage T; García de Abajo FJ; Ropers C
    Nat Commun; 2023 Oct; 14(1):6545. PubMed ID: 37848420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-Resolved Surface Plasmon Scattering Probed by Cathodoluminescence Holography.
    Schilder NJ; Agrawal H; Garnett EC; Polman A
    ACS Photonics; 2020 Jun; 7(6):1476-1482. PubMed ID: 32566698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward Optimum Coupling between Free Electrons and Confined Optical Modes.
    Di Giulio V; Akerboom E; Polman A; García de Abajo FJ
    ACS Nano; 2024 Jun; 18(22):14255-14275. PubMed ID: 38775711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photon gating in four-dimensional ultrafast electron microscopy.
    Hassan MT; Liu H; Baskin JS; Zewail AH
    Proc Natl Acad Sci U S A; 2015 Oct; 112(42):12944-9. PubMed ID: 26438835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unveiling Spatial and Temporal Dynamics of Plasmon-Enhanced Localized Fields in Metallic Nanoframes through Ultrafast Electron Microscopy.
    Tanriover I; Li Y; Gage TE; Arslan I; Liu H; Mirkin CA; Aydin K
    ACS Nano; 2024 Oct; 18(41):28258-28267. PubMed ID: 39351793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-Enhanced Molecular Electron Energy Loss Spectroscopy.
    Konečná A; Neuman T; Aizpurua J; Hillenbrand R
    ACS Nano; 2018 May; 12(5):4775-4786. PubMed ID: 29641179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements.
    Losquin A; Zagonel LF; Myroshnychenko V; Rodríguez-González B; Tencé M; Scarabelli L; Förstner J; Liz-Marzán LM; García de Abajo FJ; Stéphan O; Kociak M
    Nano Lett; 2015 Feb; 15(2):1229-37. PubMed ID: 25603194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photon-induced near-field electron microscopy.
    Barwick B; Flannigan DJ; Zewail AH
    Nature; 2009 Dec; 462(7275):902-6. PubMed ID: 20016598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale Spatial Coherent Control over the Modal Excitation of a Coupled Plasmonic Resonator System.
    Coenen T; Schoen DT; Mann SA; Rodriguez SR; Brenny BJ; Polman A; Brongersma ML
    Nano Lett; 2015 Nov; 15(11):7666-70. PubMed ID: 26457569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the electron- and photon-driven plasmonic excitations of metal nanorods.
    Bigelow NW; Vaschillo A; Iberi V; Camden JP; Masiello DJ
    ACS Nano; 2012 Aug; 6(8):7497-504. PubMed ID: 22849410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared PINEM developed by diffraction in 4D UEM.
    Liu H; Baskin JS; Zewail AH
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2041-6. PubMed ID: 26848135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Spatial Resolution Mapping of Localized Surface Plasmon Resonances in Single Gallium Nanoparticles.
    de la Mata M; Catalán-Gómez S; Nucciarelli F; Pau JL; Molina SI
    Small; 2019 Oct; 15(43):e1902920. PubMed ID: 31496053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study.
    Myroshnychenko V; Nelayah J; Adamo G; Geuquet N; Rodríguez-Fernández J; Pastoriza-Santos I; MacDonald KF; Henrard L; Liz-Marzán LM; Zheludev NI; Kociak M; García de Abajo FJ
    Nano Lett; 2012 Aug; 12(8):4172-80. PubMed ID: 22746278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping optical Bloch modes of a plasmonic square lattice in real and reciprocal spaces using cathodoluminescence spectroscopy.
    Bittorf PH; Davoodi F; Taleb M; Talebi N
    Opt Express; 2021 Oct; 29(21):34328-34340. PubMed ID: 34809226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna.
    Caselli N; La China F; Bao W; Riboli F; Gerardino A; Li L; Linfield EH; Pagliano F; Fiore A; Schuck PJ; Cabrini S; Weber-Bargioni A; Gurioli M; Intonti F
    Sci Rep; 2015 Jun; 5():9606. PubMed ID: 26045401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical field tuning of localized plasmon modes in Ag microcrystals at the nanofemto scale.
    Dai Y; Dąbrowski M; Petek H
    J Chem Phys; 2020 Feb; 152(5):054201. PubMed ID: 32035439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.