BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 33859190)

  • 1. Reconstitution of contractile actomyosin rings in vesicles.
    Litschel T; Kelley CF; Holz D; Adeli Koudehi M; Vogel SK; Burbaum L; Mizuno N; Vavylonis D; Schwille P
    Nat Commun; 2021 Apr; 12(1):2254. PubMed ID: 33859190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane localization of actin filaments stabilizes giant unilamellar vesicles against external deforming forces.
    Fink A; Fazliev S; Abele T; Spatz JP; Göpfrich K; Cavalcanti-Adam EA
    Eur J Cell Biol; 2024 Jun; 103(2):151428. PubMed ID: 38850712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized cDICE for Efficient Reconstitution of Biological Systems in Giant Unilamellar Vesicles.
    Van de Cauter L; Fanalista F; van Buren L; De Franceschi N; Godino E; Bouw S; Danelon C; Dekker C; Koenderink GH; Ganzinger KA
    ACS Synth Biol; 2021 Jul; 10(7):1690-1702. PubMed ID: 34185516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Light-Responsive Contractile Actomyosin Networks with DNA Nanotechnology.
    Jahnke K; Weiss M; Weber C; Platzman I; Göpfrich K; Spatz JP
    Adv Biosyst; 2020 Sep; 4(9):e2000102. PubMed ID: 32696544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Actomyosin-Assisted Pulling of Lipid Nanotubes from Lipid Vesicles and Cells.
    Jahnke K; Maurer SJ; Weber C; Bücher JEH; Schoenit A; D'Este E; Cavalcanti-Adam EA; Göpfrich K
    Nano Lett; 2022 Feb; 22(3):1145-1150. PubMed ID: 35089720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-sized spherical confinement induces the spontaneous formation of contractile actomyosin rings in vitro.
    Miyazaki M; Chiba M; Eguchi H; Ohki T; Ishiwata S
    Nat Cell Biol; 2015 Apr; 17(4):480-9. PubMed ID: 25799060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-Pot Assembly of Complex Giant Unilamellar Vesicle-Based Synthetic Cells.
    Göpfrich K; Haller B; Staufer O; Dreher Y; Mersdorf U; Platzman I; Spatz JP
    ACS Synth Biol; 2019 May; 8(5):937-947. PubMed ID: 31042361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Actomyosin-Driven Division of a Synthetic Cell.
    Baldauf L; van Buren L; Fanalista F; Koenderink GH
    ACS Synth Biol; 2022 Oct; 11(10):3120-3133. PubMed ID: 36164967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cylindrical cellular geometry ensures fidelity of division site placement in fission yeast.
    Mishra M; Huang Y; Srivastava P; Srinivasan R; Sevugan M; Shlomovitz R; Gov N; Rao M; Balasubramanian M
    J Cell Sci; 2012 Aug; 125(Pt 16):3850-7. PubMed ID: 22505610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bottom-Up Assembly of Synthetic Cells with a DNA Cytoskeleton.
    Jahnke K; Huth V; Mersdorf U; Liu N; Göpfrich K
    ACS Nano; 2022 May; 16(5):7233-7241. PubMed ID: 35377150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FtsZ Reorganization Facilitates Deformation of Giant Vesicles in Microfluidic Traps*.
    Ganzinger KA; Merino-Salomón A; García-Soriano DA; Butterfield AN; Litschel T; Siedler F; Schwille P
    Angew Chem Int Ed Engl; 2020 Nov; 59(48):21372-21376. PubMed ID: 32735732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actin protein inside DMPC GUVs and its mechanical response to AC electric fields.
    Ángeles-Robles G; Ortiz-Dosal LC; Aranda-Espinoza H; Olivares-Illana V; Arauz-Lara JL; Aranda-Espinoza S
    Biochim Biophys Acta Biomembr; 2022 May; 1864(5):183883. PubMed ID: 35181295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstitution and anchoring of cytoskeleton inside giant unilamellar vesicles.
    Merkle D; Kahya N; Schwille P
    Chembiochem; 2008 Nov; 9(16):2673-81. PubMed ID: 18830993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beating Vesicles: Encapsulated Protein Oscillations Cause Dynamic Membrane Deformations.
    Litschel T; Ramm B; Maas R; Heymann M; Schwille P
    Angew Chem Int Ed Engl; 2018 Dec; 57(50):16286-16290. PubMed ID: 30270475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell cycle-regulated trafficking of Chs2 controls actomyosin ring stability during cytokinesis.
    VerPlank L; Li R
    Mol Biol Cell; 2005 May; 16(5):2529-43. PubMed ID: 15772160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studying actin-induced cell shape changes using Giant Unilamellar Vesicles and reconstituted actin networks.
    Lopes Dos Santos R; Campillo C
    Biochem Soc Trans; 2022 Oct; 50(5):1527-1539. PubMed ID: 36111807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonequilibrium phase diagrams for actomyosin networks.
    Freedman SL; Hocky GM; Banerjee S; Dinner AR
    Soft Matter; 2018 Sep; 14(37):7740-7747. PubMed ID: 30204203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic polyhedral actomyosin lattices remodel micron-scale curved membranes during exocytosis in live mice.
    Ebrahim S; Chen D; Weiss M; Malec L; Ng Y; Rebustini I; Krystofiak E; Hu L; Liu J; Masedunskas A; Hardeman E; Gunning P; Kachar B; Weigert R
    Nat Cell Biol; 2019 Aug; 21(8):933-939. PubMed ID: 31358965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein Reconstitution Inside Giant Unilamellar Vesicles.
    Litschel T; Schwille P
    Annu Rev Biophys; 2021 May; 50():525-548. PubMed ID: 33667121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Architecture shapes contractility in actomyosin networks.
    Koenderink GH; Paluch EK
    Curr Opin Cell Biol; 2018 Feb; 50():79-85. PubMed ID: 29482169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.