These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33859280)

  • 21. Effects of soil data resolution on SWAT model stream flow and water quality predictions.
    Geza M; McCray JE
    J Environ Manage; 2008 Aug; 88(3):393-406. PubMed ID: 17475392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimating daily time series of streamflow using hydrological model calibrated based on satellite observations of river water surface width: Toward real world applications.
    Sun W; Ishidaira H; Bastola S; Yu J
    Environ Res; 2015 May; 139():36-45. PubMed ID: 25680241
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantification and simulation of nutrient sources at watershed scale in Mississippi.
    Risal A; Parajuli PB
    Sci Total Environ; 2019 Jun; 670():633-643. PubMed ID: 30909041
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A SWAT model validation of nested-scale contemporaneous stream flow, suspended sediment and nutrients from a multiple-land-use watershed of the central USA.
    Zeiger SJ; Hubbart JA
    Sci Total Environ; 2016 Dec; 572():232-243. PubMed ID: 27501422
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Incorporating a non-reactive heavy metal simulation module into SWAT model and its application in the Athabasca oil sands region.
    Du X; Shrestha NK; Wang J
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20879-20892. PubMed ID: 31115819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effectiveness of low impact development practices in two urbanized watersheds: retrofitting with rain barrel/cistern and porous pavement.
    Ahiablame LM; Engel BA; Chaubey I
    J Environ Manage; 2013 Apr; 119():151-61. PubMed ID: 23474339
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulation of streamflow and sediment with the soil and water assessment tool in a data scarce catchment in the three gorges region, china.
    Bieger K; Hörmann G; Fohrer N
    J Environ Qual; 2014 Jan; 43(1):37-45. PubMed ID: 25602538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulating Landscape Sediment Transport Capacity by Using a Modified SWAT Model.
    Bonumá NB; Rossi CG; Arnold JG; Reichert JM; Minella JP; Allen PM; Volk M
    J Environ Qual; 2014 Jan; 43(1):55-66. PubMed ID: 25602540
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantifying ground water recharge at multiple scales using PRMS and GIS.
    Cherkauer DS
    Ground Water; 2004; 42(1):97-110. PubMed ID: 14763622
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantifying climate, streamflow, and watershed control on water quality across Southeastern US watersheds.
    Alnahit AO; Mishra AK; Khan AA
    Sci Total Environ; 2020 Oct; 739():139945. PubMed ID: 32758942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensitivity-Based Calibration of the Soil and Water Assessment Tool for Hydrologic Cycle Simulation in the Cong Watershed, Vietnam.
    Anh NV; Fukuda S; Hiramatsu K; Harada M
    Water Environ Res; 2015 Aug; 87(8):735-50. PubMed ID: 26237690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modelling the impact of past and future climate scenarios on streamflow in a highly mountainous watershed: A case study in the West Seti River Basin, Nepal.
    Bhatta B; Shrestha S; Shrestha PK; Talchabhadel R
    Sci Total Environ; 2020 Oct; 740():140156. PubMed ID: 32563002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of the SWAT model to the Xiangjiang river watershed in subtropical central China.
    Luo Q; Li Y; Wang K; Wu J
    Water Sci Technol; 2013; 67(9):2110-6. PubMed ID: 23656956
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Land use change impacts on water quality in three lake winnipeg watersheds.
    Yang Q; Leon LF; Booty WG; Wong IW; McCrimmon C; Fong P; Michiels P; Vanrobaeys J; Benoy G
    J Environ Qual; 2014 Sep; 43(5):1690-701. PubMed ID: 25603255
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improvement of simulating sub-daily hydrological impacts of rainwater harvesting for landscape irrigation with rain barrels/cisterns in the SWAT model.
    Li S; Liu Y; Her Y; Chen J; Guo T; Shao G
    Sci Total Environ; 2021 Dec; 798():149336. PubMed ID: 34375258
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sediment measurement and transport modeling: impact of riparian and filter strip buffers.
    Moriasi DN; Steiner JL; Arnold JG
    J Environ Qual; 2011; 40(3):807-14. PubMed ID: 21546666
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Test of APEX for nine forested watersheds in East Texas.
    Wang X; Saleh A; McBroom MW; Williams JR; Yin L
    J Environ Qual; 2007; 36(4):983-95. PubMed ID: 17526877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling the impacts of agricultural best management practices on runoff, sediment, and crop yield in an agriculture-pasture intensive watershed.
    Rasoulzadeh Gharibdousti S; Kharel G; Stoecker A
    PeerJ; 2019; 7():e7093. PubMed ID: 31308995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing the vulnerability of water resources in the context of climate changes in a small forested watershed using SWAT: A review.
    Marin M; Clinciu I; Tudose NC; Ungurean C; Adorjani A; Mihalache AL; Davidescu AA; Davidescu ȘO; Dinca L; Cacovean H
    Environ Res; 2020 May; 184():109330. PubMed ID: 32151844
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessing controls on selenium fate and transport in watersheds using the SWAT model.
    Neupane P; Bailey RT; Tavakoli-Kivi S
    Sci Total Environ; 2020 Oct; 738():140318. PubMed ID: 32806359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.