These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 33859289)
1. Estimation of carbon dioxide emissions from the megafires of Australia in 2019-2020. Shiraishi T; Hirata R Sci Rep; 2021 Apr; 11(1):8267. PubMed ID: 33859289 [TBL] [Abstract][Full Text] [Related]
2. Quantifying immediate carbon emissions from El Niño-mediated wildfires in humid tropical forests. Withey K; Berenguer E; Palmeira AF; Espírito-Santo FDB; Lennox GD; Silva CVJ; Aragão LEOC; Ferreira J; França F; Malhi Y; Rossi LC; Barlow J Philos Trans R Soc Lond B Biol Sci; 2018 Oct; 373(1760):. PubMed ID: 30297469 [TBL] [Abstract][Full Text] [Related]
3. CO Amaral SS; Costa MAM; Soares Neto TG; Costa MP; Dias FF; Anselmo E; Santos JCD; Carvalho JA Environ Pollut; 2019 Jun; 249():311-320. PubMed ID: 30901645 [TBL] [Abstract][Full Text] [Related]
4. Estimating relationships between forest fires and greenhouse gas emissions: circular and cumulative effects or unidirectional causality? Martinho VJPD Environ Monit Assess; 2019 Aug; 191(9):581. PubMed ID: 31435744 [TBL] [Abstract][Full Text] [Related]
5. CO Guo M; Li J; Xu J; Wang X; He H; Wu L Environ Pollut; 2017 Jul; 226():60-68. PubMed ID: 28407537 [TBL] [Abstract][Full Text] [Related]
6. Vast CO van der Velde IR; van der Werf GR; Houweling S; Maasakkers JD; Borsdorff T; Landgraf J; Tol P; van Kempen TA; van Hees R; Hoogeveen R; Veefkind JP; Aben I Nature; 2021 Sep; 597(7876):366-369. PubMed ID: 34526704 [TBL] [Abstract][Full Text] [Related]
7. Temporal comparison of global inventories of CO Shi Y; Matsunaga T Environ Sci Pollut Res Int; 2017 Jul; 24(20):16905-16916. PubMed ID: 28577139 [TBL] [Abstract][Full Text] [Related]
8. Vast ecosystem disturbance in a warming climate may jeopardize our climate goal of reducing CO Hong X; Liu C; Zhang C; Tian Y; Wu H; Yin H; Zhu Y; Cheng Y Sci Total Environ; 2023 Mar; 866():161387. PubMed ID: 36621492 [TBL] [Abstract][Full Text] [Related]
9. Extreme wildfires in Canada and their contribution to global loss in tree cover and carbon emissions in 2023. MacCarthy J; Tyukavina A; Weisse MJ; Harris N; Glen E Glob Chang Biol; 2024 Jun; 30(6):e17392. PubMed ID: 38934256 [TBL] [Abstract][Full Text] [Related]
10. Fixing a snag in carbon emissions estimates from wildfires. Stenzel JE; Bartowitz KJ; Hartman MD; Lutz JA; Kolden CA; Smith AMS; Law BE; Swanson ME; Larson AJ; Parton WJ; Hudiburg TW Glob Chang Biol; 2019 Nov; 25(11):3985-3994. PubMed ID: 31148284 [TBL] [Abstract][Full Text] [Related]
11. Remote sensing-based estimates of annual and seasonal emissions from crop residue burning in the contiguous United States. McCarty JL J Air Waste Manag Assoc; 2011 Jan; 61(1):22-34. PubMed ID: 21305885 [TBL] [Abstract][Full Text] [Related]
12. Diurnal and seasonal variations of greenhouse gas emissions from a commercial broiler barn and cage-layer barn in the Canadian Prairies. Huang D; Guo H Environ Pollut; 2019 May; 248():726-735. PubMed ID: 30849590 [TBL] [Abstract][Full Text] [Related]
13. Carbon dioxide and particulate emissions from the 2013 Tasmanian firestorm: implications for Australian carbon accounting. Ndalila MN; Williamson GJ; Bowman DMJS Carbon Balance Manag; 2022 May; 17(1):7. PubMed ID: 35616743 [TBL] [Abstract][Full Text] [Related]
14. Comparison of global inventories of CO2 emissions from biomass burning during 2002-2011 derived from multiple satellite products. Shi Y; Matsunaga T; Saito M; Yamaguchi Y; Chen X Environ Pollut; 2015 Nov; 206():479-87. PubMed ID: 26281761 [TBL] [Abstract][Full Text] [Related]
15. Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils. Baah-Acheamfour M; Carlyle CN; Lim SS; Bork EW; Chang SX Sci Total Environ; 2016 Nov; 571():1115-27. PubMed ID: 27450260 [TBL] [Abstract][Full Text] [Related]
16. How production-based and consumption-based emissions accounting systems change climate policy analysis: the case of CO Karakaya E; Yılmaz B; Alataş S Environ Sci Pollut Res Int; 2019 Jun; 26(16):16682-16694. PubMed ID: 30989611 [TBL] [Abstract][Full Text] [Related]
17. Punching above their weight: Large release of greenhouse gases from small agricultural dams. Ollivier QR; Maher DT; Pitfield C; Macreadie PI Glob Chang Biol; 2019 Feb; 25(2):721-732. PubMed ID: 30457192 [TBL] [Abstract][Full Text] [Related]
18. In-situ measurement of greenhouse gas emissions from a coastal estuarine wetland using a novel continuous monitoring technology: Comparison of indigenous and exotic plant species. Hsieh SH; Yuan CS; Ie IR; Yang L; Lin HJ; Hsueh ML J Environ Manage; 2021 Mar; 281():111905. PubMed ID: 33388713 [TBL] [Abstract][Full Text] [Related]
19. Anthropogenic and biogenic CO Sargent M; Barrera Y; Nehrkorn T; Hutyra LR; Gately CK; Jones T; McKain K; Sweeney C; Hegarty J; Hardiman B; Wang JA; Wofsy SC Proc Natl Acad Sci U S A; 2018 Jul; 115(29):7491-7496. PubMed ID: 29967154 [TBL] [Abstract][Full Text] [Related]
20. Sectoral assessment of greenhouse gas emissions in Pakistan. Mir KA; Purohit P; Mehmood S Environ Sci Pollut Res Int; 2017 Dec; 24(35):27345-27355. PubMed ID: 28975514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]