These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

686 related articles for article (PubMed ID: 33859752)

  • 1. Turning cold tumors into hot tumors by improving T-cell infiltration.
    Liu YT; Sun ZJ
    Theranostics; 2021; 11(11):5365-5386. PubMed ID: 33859752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overcoming cold tumors: a combination strategy of immune checkpoint inhibitors.
    Ouyang P; Wang L; Wu J; Tian Y; Chen C; Li D; Yao Z; Chen R; Xiang G; Gong J; Bao Z
    Front Immunol; 2024; 15():1344272. PubMed ID: 38545114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Firing up "cold" tumors: Ferroptosis causes immune activation by improving T cell infiltration.
    Li X; Li Y; Tuerxun H; Zhao Y; Liu X; Zhao Y
    Biomed Pharmacother; 2024 Oct; 179():117298. PubMed ID: 39151313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is there a role for Gallium-67 SPECT in distinguishing progression and pseudoprogresion in oncologic patients receiving immunotherapy?
    Mauri D; Tsiouris S; Gkoura S; Gazouli I; Ntellas P; Amylidis A; Kampletsas L; Fotopoulos A
    Cancer Treat Res Commun; 2021; 28():100441. PubMed ID: 34404012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-functional nanomedicines for combinational cancer immunotherapy that transform cold tumors to hot tumors.
    Cho H; Kim K
    Expert Opin Drug Deliv; 2024 Apr; 21(4):627-638. PubMed ID: 38682272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunologic tumor microenvironment modulators for turning cold tumors hot.
    Khosravi GR; Mostafavi S; Bastan S; Ebrahimi N; Gharibvand RS; Eskandari N
    Cancer Commun (Lond); 2024 May; 44(5):521-553. PubMed ID: 38551889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges and exploration for immunotherapies targeting cold colorectal cancer.
    Li DD; Tang YL; Wang X
    World J Gastrointest Oncol; 2023 Jan; 15(1):55-68. PubMed ID: 36684057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Igniting Hope for Tumor Immunotherapy: Promoting the "Hot and Cold" Tumor Transition.
    Wei C; Ma Y; Wang F; Liao Y; Chen Y; Zhao B; Zhao Q; Wang D; Tang D
    Clin Med Insights Oncol; 2022; 16():11795549221120708. PubMed ID: 36147198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cold Tumors: A Therapeutic Challenge for Immunotherapy.
    Bonaventura P; Shekarian T; Alcazer V; Valladeau-Guilemond J; Valsesia-Wittmann S; Amigorena S; Caux C; Depil S
    Front Immunol; 2019; 10():168. PubMed ID: 30800125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining Nanomedicine and Immunotherapy.
    Shi Y; Lammers T
    Acc Chem Res; 2019 Jun; 52(6):1543-1554. PubMed ID: 31120725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oncolytic Viruses: Priming Time for Cancer Immunotherapy.
    Russell L; Peng KW; Russell SJ; Diaz RM
    BioDrugs; 2019 Oct; 33(5):485-501. PubMed ID: 31321623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy.
    Sánchez-Paulete AR; Teijeira A; Cueto FJ; Garasa S; Pérez-Gracia JL; Sánchez-Arráez A; Sancho D; Melero I
    Ann Oncol; 2017 Dec; 28(suppl_12):xii44-xii55. PubMed ID: 28945841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immune checkpoint inhibitor combinations: Current efforts and important aspects for success.
    Kon E; Benhar I
    Drug Resist Updat; 2019 Jul; 45():13-29. PubMed ID: 31382144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immune checkpoint inhibitors with radiotherapy and locoregional treatment: synergism and potential clinical implications.
    Esposito A; Criscitiello C; Curigliano G
    Curr Opin Oncol; 2015 Nov; 27(6):445-51. PubMed ID: 26447875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining vaccines and immune checkpoint inhibitors to prime, expand, and facilitate effective tumor immunotherapy.
    Collins JM; Redman JM; Gulley JL
    Expert Rev Vaccines; 2018 Aug; 17(8):697-705. PubMed ID: 30058393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of anti-cancer T cell immunity by in situ vaccination using systemically administered nanomedicines.
    Lynn GM; Laga R; Jewell CM
    Cancer Lett; 2019 Sep; 459():192-203. PubMed ID: 31185250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory effect of adenosine on adaptive antitumor immunity and intervention strategies.
    Wang L; Zhang W; Zhang J; Zheng M; Pan X; Guo H; Ding L
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2023 Sep; 52(5):567-577. PubMed ID: 37916308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying and Targeting Human Tumor Antigens for T Cell-Based Immunotherapy of Solid Tumors.
    Leko V; Rosenberg SA
    Cancer Cell; 2020 Oct; 38(4):454-472. PubMed ID: 32822573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advancements in Nanomedicine for 'Cold' Tumor Immunotherapy.
    Chen Q; Sun T; Jiang C
    Nanomicro Lett; 2021 Mar; 13(1):92. PubMed ID: 34138315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving antitumor immunity using antiangiogenic agents: Mechanistic insights, current progress, and clinical challenges.
    Li SJ; Chen JX; Sun ZJ
    Cancer Commun (Lond); 2021 Sep; 41(9):830-850. PubMed ID: 34137513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.