BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

639 related articles for article (PubMed ID: 33859752)

  • 1. Turning cold tumors into hot tumors by improving T-cell infiltration.
    Liu YT; Sun ZJ
    Theranostics; 2021; 11(11):5365-5386. PubMed ID: 33859752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overcoming cold tumors: a combination strategy of immune checkpoint inhibitors.
    Ouyang P; Wang L; Wu J; Tian Y; Chen C; Li D; Yao Z; Chen R; Xiang G; Gong J; Bao Z
    Front Immunol; 2024; 15():1344272. PubMed ID: 38545114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is there a role for Gallium-67 SPECT in distinguishing progression and pseudoprogresion in oncologic patients receiving immunotherapy?
    Mauri D; Tsiouris S; Gkoura S; Gazouli I; Ntellas P; Amylidis A; Kampletsas L; Fotopoulos A
    Cancer Treat Res Commun; 2021; 28():100441. PubMed ID: 34404012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-functional nanomedicines for combinational cancer immunotherapy that transform cold tumors to hot tumors.
    Cho H; Kim K
    Expert Opin Drug Deliv; 2024 Apr; 21(4):627-638. PubMed ID: 38682272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunologic tumor microenvironment modulators for turning cold tumors hot.
    Khosravi GR; Mostafavi S; Bastan S; Ebrahimi N; Gharibvand RS; Eskandari N
    Cancer Commun (Lond); 2024 May; 44(5):521-553. PubMed ID: 38551889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges and exploration for immunotherapies targeting cold colorectal cancer.
    Li DD; Tang YL; Wang X
    World J Gastrointest Oncol; 2023 Jan; 15(1):55-68. PubMed ID: 36684057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Igniting Hope for Tumor Immunotherapy: Promoting the "Hot and Cold" Tumor Transition.
    Wei C; Ma Y; Wang F; Liao Y; Chen Y; Zhao B; Zhao Q; Wang D; Tang D
    Clin Med Insights Oncol; 2022; 16():11795549221120708. PubMed ID: 36147198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold Tumors: A Therapeutic Challenge for Immunotherapy.
    Bonaventura P; Shekarian T; Alcazer V; Valladeau-Guilemond J; Valsesia-Wittmann S; Amigorena S; Caux C; Depil S
    Front Immunol; 2019; 10():168. PubMed ID: 30800125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining Nanomedicine and Immunotherapy.
    Shi Y; Lammers T
    Acc Chem Res; 2019 Jun; 52(6):1543-1554. PubMed ID: 31120725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oncolytic Viruses: Priming Time for Cancer Immunotherapy.
    Russell L; Peng KW; Russell SJ; Diaz RM
    BioDrugs; 2019 Oct; 33(5):485-501. PubMed ID: 31321623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy.
    Sánchez-Paulete AR; Teijeira A; Cueto FJ; Garasa S; Pérez-Gracia JL; Sánchez-Arráez A; Sancho D; Melero I
    Ann Oncol; 2017 Dec; 28(suppl_12):xii44-xii55. PubMed ID: 28945841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immune checkpoint inhibitor combinations: Current efforts and important aspects for success.
    Kon E; Benhar I
    Drug Resist Updat; 2019 Jul; 45():13-29. PubMed ID: 31382144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immune checkpoint inhibitors with radiotherapy and locoregional treatment: synergism and potential clinical implications.
    Esposito A; Criscitiello C; Curigliano G
    Curr Opin Oncol; 2015 Nov; 27(6):445-51. PubMed ID: 26447875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining vaccines and immune checkpoint inhibitors to prime, expand, and facilitate effective tumor immunotherapy.
    Collins JM; Redman JM; Gulley JL
    Expert Rev Vaccines; 2018 Aug; 17(8):697-705. PubMed ID: 30058393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of anti-cancer T cell immunity by in situ vaccination using systemically administered nanomedicines.
    Lynn GM; Laga R; Jewell CM
    Cancer Lett; 2019 Sep; 459():192-203. PubMed ID: 31185250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory effect of adenosine on adaptive antitumor immunity and intervention strategies.
    Wang L; Zhang W; Zhang J; Zheng M; Pan X; Guo H; Ding L
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2023 Sep; 52(5):567-577. PubMed ID: 37916308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying and Targeting Human Tumor Antigens for T Cell-Based Immunotherapy of Solid Tumors.
    Leko V; Rosenberg SA
    Cancer Cell; 2020 Oct; 38(4):454-472. PubMed ID: 32822573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advancements in Nanomedicine for 'Cold' Tumor Immunotherapy.
    Chen Q; Sun T; Jiang C
    Nanomicro Lett; 2021 Mar; 13(1):92. PubMed ID: 34138315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving antitumor immunity using antiangiogenic agents: Mechanistic insights, current progress, and clinical challenges.
    Li SJ; Chen JX; Sun ZJ
    Cancer Commun (Lond); 2021 Sep; 41(9):830-850. PubMed ID: 34137513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. T-cell and NK-cell infiltration into solid tumors: a key limiting factor for efficacious cancer immunotherapy.
    Melero I; Rouzaut A; Motz GT; Coukos G
    Cancer Discov; 2014 May; 4(5):522-6. PubMed ID: 24795012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.