BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33859801)

  • 1. A Set of Highly Sensitive Sirtuin Fluorescence Probes for Screening Small-Molecular Sirtuin Defatty-Acylase Inhibitors.
    Nakajima Y; Kawaguchi M; Ieda N; Nakagawa H
    ACS Med Chem Lett; 2021 Apr; 12(4):617-624. PubMed ID: 33859801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Peptide-Based Sirtuin Defatty-Acylase Inhibitors Identified by the Fluorescence Probe, SFP3, That Can Efficiently Measure Defatty-Acylase Activity of Sirtuin.
    Kawaguchi M; Ieda N; Nakagawa H
    J Med Chem; 2019 Jun; 62(11):5434-5452. PubMed ID: 31117516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorogenic Assays for the Defatty-Acylase Activity of Sirtuins.
    Young Hong J; Cao J; Lin H
    Methods Mol Biol; 2019; 2009():129-136. PubMed ID: 31152400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Inhibition of SIRT2 Deacetylase and Defatty-Acylase Activities via a PROTAC Strategy.
    Hong JY; Jing H; Price IR; Cao J; Bai JJ; Lin H
    ACS Med Chem Lett; 2020 Nov; 11(11):2305-2311. PubMed ID: 33214845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Throughput Screening Identifies Ascorbyl Palmitate as a SIRT2 Deacetylase and Defatty-Acylase Inhibitor.
    Hong JY; Cassel J; Yang J; Lin H; Weiser BP
    ChemMedChem; 2021 Nov; 16(22):3484-3494. PubMed ID: 34382754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Fluorescent Probe for Imaging Sirtuin Activity in Living Cells, Based on One-Step Cleavage of the Dabcyl Quencher.
    Kawaguchi M; Ikegawa S; Ieda N; Nakagawa H
    Chembiochem; 2016 Oct; 17(20):1961-1967. PubMed ID: 27542094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Small-Molecule SIRT2 Inhibitor That Promotes K-Ras4a Lysine Fatty-Acylation.
    Spiegelman NA; Hong JY; Hu J; Jing H; Wang M; Price IR; Cao J; Yang M; Zhang X; Lin H
    ChemMedChem; 2019 Apr; 14(7):744-748. PubMed ID: 30734528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A FRET-based assay for screening SIRT6 modulators.
    Li Y; You L; Huang W; Liu J; Zhu H; He B
    Eur J Med Chem; 2015; 96():245-9. PubMed ID: 25884115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a NanoBRET assay to validate inhibitors of Sirt2-mediated lysine deacetylation and defatty-acylation that block prostate cancer cell migration.
    Vogelmann A; Schiedel M; Wössner N; Merz A; Herp D; Hammelmann S; Colcerasa A; Komaniecki G; Hong JY; Sum M; Metzger E; Neuwirt E; Zhang L; Einsle O; Groß O; Schüle R; Lin H; Sippl W; Jung M
    RSC Chem Biol; 2022 Apr; 3(4):468-485. PubMed ID: 35441145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Dimerization on the Deacylase Activities of Human SIRT2.
    Yang J; Nicely NI; Weiser BP
    Biochemistry; 2023 Dec; 62(23):3383-3395. PubMed ID: 37966275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A homogeneous time-resolved fluorescence screen to identify SIRT2 deacetylase and defatty-acylase inhibitors.
    Yang J; Cassel J; Boyle BC; Oppong D; Ahn YH; Weiser BP
    PLoS One; 2024; 19(6):e0305000. PubMed ID: 38913635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unexpected small molecules as novel SIRT2 suicide inhibitors.
    Chen X; Zou Y; Wang J; Cao Z; Liu J; Li Y; Zhao Y; He B
    Bioorg Med Chem; 2020 Mar; 28(6):115353. PubMed ID: 32061485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A one-step specific assay for continuous detection of sirtuin 2 activity.
    Dai Q; Zheng Z; Xia F; Liu P; Li M
    Acta Pharm Sin B; 2019 Nov; 9(6):1183-1192. PubMed ID: 31867164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying the functional contribution of the defatty-acylase activity of SIRT6.
    Zhang X; Khan S; Jiang H; Antonyak MA; Chen X; Spiegelman NA; Shrimp JH; Cerione RA; Lin H
    Nat Chem Biol; 2016 Aug; 12(8):614-20. PubMed ID: 27322069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous Sirtuin/HDAC (histone deacetylase) activity assay using thioamides as PET (Photoinduced Electron Transfer)-based fluorescence quencher.
    Zessin M; Meleshin M; Simic Z; Kalbas D; Arbach M; Gebhardt P; Melesina J; Liebscher S; Bordusa F; Sippl W; Barinka C; Schutkowski M
    Bioorg Chem; 2021 Dec; 117():105425. PubMed ID: 34695733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a novel small molecule that inhibits deacetylase but not defatty-acylase reaction catalysed by SIRT2.
    Kudo N; Ito A; Arata M; Nakata A; Yoshida M
    Philos Trans R Soc Lond B Biol Sci; 2018 Jun; 373(1748):. PubMed ID: 29685974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global Profiling of Sirtuin Deacylase Substrates Using a Chemical Proteomic Strategy and Validation by Fluorescent Labeling.
    Zhang S; Spiegelman NA; Lin H
    Methods Mol Biol; 2019; 2009():137-147. PubMed ID: 31152401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Golgi stress induces SIRT2 to counteract Shigella infection via defatty-acylation.
    Wang M; Zhang Y; Komaniecki GP; Lu X; Cao J; Zhang M; Yu T; Hou D; Spiegelman NA; Yang M; Price IR; Lin H
    Nat Commun; 2022 Aug; 13(1):4494. PubMed ID: 35918380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins.
    Feldman JL; Baeza J; Denu JM
    J Biol Chem; 2013 Oct; 288(43):31350-6. PubMed ID: 24052263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and Structural Basis for Acyl-Group Selectivity and NAD(+) Dependence in Sirtuin-Catalyzed Deacylation.
    Feldman JL; Dittenhafer-Reed KE; Kudo N; Thelen JN; Ito A; Yoshida M; Denu JM
    Biochemistry; 2015 May; 54(19):3037-3050. PubMed ID: 25897714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.