BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33859997)

  • 1. Site-Specific Introduction of Negative Charges on the Protein Surface for Improving Global Functions of Recombinant Fetal Hemoglobin.
    Kettisen K; Dicko C; Smeds E; Bülow L
    Front Mol Biosci; 2021; 8():649007. PubMed ID: 33859997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introducing Negatively Charged Residues on the Surface of Fetal Hemoglobin Improves Yields in
    Kettisen K; Bülow L
    Front Bioeng Biotechnol; 2021; 9():721794. PubMed ID: 34552916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and oxidative investigation of a recombinant high-yielding fetal hemoglobin mutant.
    Kettisen K; Nyblom M; Smeds E; Fago A; Bülow L
    Front Mol Biosci; 2023; 10():1133985. PubMed ID: 37006610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatographic separation of hemoglobin variants using robust molecularly imprinted polymers.
    Zhang K; Zhou T; Kettisen K; Ye L; Bülow L
    Talanta; 2019 Jul; 199():27-31. PubMed ID: 30952256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-terminal contributions of the gamma-subunit of fetal hemoglobin to its tetramer strength: remote effects at subunit contacts.
    Yagami T; Ballard BT; Padovan JC; Chait BT; Popowicz AM; Manning JM
    Protein Sci; 2002 Jan; 11(1):27-35. PubMed ID: 11742119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-directed mutagenesis of cysteine residues alters oxidative stability of fetal hemoglobin.
    Kettisen K; Strader MB; Wood F; Alayash AI; Bülow L
    Redox Biol; 2018 Oct; 19():218-225. PubMed ID: 30193183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of a recombinant human hemoglobin with aspartic acid 99(beta), an important intersubunit contact site, substituted by lysine.
    Yanase H; Cahill S; Martin de Llano JJ; Manning LR; Schneider K; Chait BT; Vandegriff KD; Winslow RM; Manning JM
    Protein Sci; 1994 Aug; 3(8):1213-23. PubMed ID: 7987216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fetal hemoglobin is much less prone to DNA cleavage compared to the adult protein.
    Chakane S; Matos T; Kettisen K; Bulow L
    Redox Biol; 2017 Aug; 12():114-120. PubMed ID: 28222378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The oxidative denitrosylation mechanism and nitric oxide release from human fetal and adult hemoglobin, an experimentally based model simulation study.
    Salhany JM
    Blood Cells Mol Dis; 2013 Jan; 50(1):8-19. PubMed ID: 22981699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of α-Hb chain binding to its chaperone AHSP depends on heme coordination and redox state.
    Kiger L; Vasseur C; Domingues-Hamdi E; Truan G; Marden MC; Baudin-Creuza V
    Biochim Biophys Acta; 2014 Jan; 1840(1):277-87. PubMed ID: 24060751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of substitutions of lysine and aspartic acid for asparagine at beta 108 and of tryptophan for valine at alpha 96 on the structural and functional properties of human normal adult hemoglobin: roles of alpha 1 beta 1 and alpha 1 beta 2 subunit interfaces in the cooperative oxygenation process.
    Tsai CH; Shen TJ; Ho NT; Ho C
    Biochemistry; 1999 Jul; 38(27):8751-61. PubMed ID: 10393550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possibilities of Using Fetal Hemoglobin as a Platform for Producing Hemoglobin-Based Oxygen Carriers (HBOCs).
    Ratanasopa K; Cedervall T; Bülow L
    Adv Exp Med Biol; 2016; 876():445-453. PubMed ID: 26782244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand binding properties and structural studies of recombinant and chemically modified hemoglobins altered at beta 93 cysteine.
    Cheng Y; Shen TJ; Simplaceanu V; Ho C
    Biochemistry; 2002 Oct; 41(39):11901-13. PubMed ID: 12269835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of a recombinant human hemoglobin double mutant: sickle hemoglobin with Leu-88(beta) at the primary aggregation site substituted by Ala.
    Martin de Llano JJ; Manning JM
    Protein Sci; 1994 Aug; 3(8):1206-12. PubMed ID: 7987215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biochemical and biophysical characterization of recombinant mutants of fetal hemoglobin and their interaction with sickle cell hemoglobin.
    Larson SC; Fisher GW; Ho NT; Shen TJ; Ho C
    Biochemistry; 1999 Jul; 38(29):9549-55. PubMed ID: 10413533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laboratory diagnosis of structural hemoglobinopathies and thalassemias by capillary isoelectric focusing.
    Hempe JM; Craver RD
    Methods Mol Med; 1999; 27():81-98. PubMed ID: 21374291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of surface histidyl residues in the alpha-chain to the Bohr effect of human normal adult hemoglobin: roles of global electrostatic effects.
    Sun DP; Zou M; Ho NT; Ho C
    Biochemistry; 1997 Jun; 36(22):6663-73. PubMed ID: 9184146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sickle Cell Hemoglobin with Mutation at αHis-50 Has Improved Solubility.
    Tam MF; Tam TC; Simplaceanu V; Ho NT; Zou M; Ho C
    J Biol Chem; 2015 Aug; 290(35):21762-72. PubMed ID: 26187468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significance of beta116 His (G18) at alpha1beta1 contact sites for alphabeta assembly and autoxidation of hemoglobin.
    Adachi K; Yang Y; Lakka V; Wehrli S; Reddy KS; Surrey S
    Biochemistry; 2003 Sep; 42(34):10252-9. PubMed ID: 12939154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and function of hemoglobin variants at an internal hydrophobic site: consequences of mutations at the beta 27 (B9) position.
    Huang Y; Pagnier J; Magne P; Baklouti F; Kister J; Delaunay J; Poyart C; Fermi G; Perutz MF
    Biochemistry; 1990 Jul; 29(30):7020-3. PubMed ID: 2223757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.