BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33860081)

  • 1. Impact of
    Fontana D; Gambacorti-Passerini C; Piazza R
    Mol Cell Oncol; 2021; 8(2):1877598. PubMed ID: 33860081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ETNK1 mutations induce a mutator phenotype that can be reverted with phosphoethanolamine.
    Fontana D; Mauri M; Renso R; Docci M; Crespiatico I; Røst LM; Jang M; Niro A; D'Aliberti D; Massimino L; Bertagna M; Zambrotta G; Bossi M; Citterio S; Crescenzi B; Fanelli F; Cassina V; Corti R; Salerno D; Nardo L; Chinello C; Mantegazza F; Mecucci C; Magni F; Cavaletti G; Bruheim P; Rea D; Larsen S; Gambacorti-Passerini C; Piazza R
    Nat Commun; 2020 Nov; 11(1):5938. PubMed ID: 33230096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recurrent ETNK1 mutations in atypical chronic myeloid leukemia.
    Gambacorti-Passerini CB; Donadoni C; Parmiani A; Pirola A; Redaelli S; Signore G; Piazza V; Malcovati L; Fontana D; Spinelli R; Magistroni V; Gaipa G; Peronaci M; Morotti A; Panuzzo C; Saglio G; Usala E; Kim DW; Rea D; Zervakis K; Viniou N; Symeonidis A; Becker H; Boultwood J; Campiotti L; Carrabba M; Elli E; Bignell GR; Papaemmanuil E; Campbell PJ; Cazzola M; Piazza R
    Blood; 2015 Jan; 125(3):499-503. PubMed ID: 25343957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel recurrent mutations in ethanolamine kinase 1 (ETNK1) gene in systemic mastocytosis with eosinophilia and chronic myelomonocytic leukemia.
    Lasho TL; Finke CM; Zblewski D; Patnaik M; Ketterling RP; Chen D; Hanson CA; Tefferi A; Pardanani A
    Blood Cancer J; 2015 Jan; 5(1):e275. PubMed ID: 25615281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive oxygen species are generated by the respiratory complex II--evidence for lack of contribution of the reverse electron flow in complex I.
    Moreno-Sánchez R; Hernández-Esquivel L; Rivero-Segura NA; Marín-Hernández A; Neuzil J; Ralph SJ; Rodríguez-Enríquez S
    FEBS J; 2013 Feb; 280(3):927-38. PubMed ID: 23206332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of isoflurane on complex II‑associated mitochondrial respiration and reactive oxygen species production: Roles of nitric oxide and mitochondrial KATP channels.
    Wang J; Sun J; Qiao S; Li H; Che T; Wang C; An J
    Mol Med Rep; 2019 Nov; 20(5):4383-4390. PubMed ID: 31545457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial permeability transition increases reactive oxygen species production and induces DNA fragmentation in human spermatozoa.
    Treulen F; Uribe P; Boguen R; Villegas JV
    Hum Reprod; 2015 Apr; 30(4):767-76. PubMed ID: 25662811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Respiratory function decline and DNA mutation in mitochondria, oxidative stress and altered gene expression during aging.
    Wei YH; Wu SB; Ma YS; Lee HC
    Chang Gung Med J; 2009; 32(2):113-32. PubMed ID: 19403001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased Succinate Accumulation Induces ROS Generation in
    Kamarauskaite J; Baniene R; Trumbeckas D; Strazdauskas A; Trumbeckaite S
    Biomed Res Int; 2020; 2020():8855585. PubMed ID: 33102598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex II.
    Korge P; John SA; Calmettes G; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9896-9905. PubMed ID: 28450394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of bioenergetics, temperature and cadmium on liver mitochondria reactive oxygen species production and consumption.
    Okoye CN; MacDonald-Jay N; Kamunde C
    Aquat Toxicol; 2019 Sep; 214():105264. PubMed ID: 31377504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Succinate dehydrogenase (mitochondrial complex II) is a source of reactive oxygen species in plants and regulates development and stress responses.
    Jardim-Messeder D; Caverzan A; Rauber R; de Souza Ferreira E; Margis-Pinheiro M; Galina A
    New Phytol; 2015 Nov; 208(3):776-89. PubMed ID: 26082998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria.
    López-Torres M; Gredilla R; Sanz A; Barja G
    Free Radic Biol Med; 2002 May; 32(9):882-9. PubMed ID: 11978489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial metabolism of reactive oxygen species.
    Venditti P; Di Stefano L; Di Meo S
    Mitochondrion; 2013 Mar; 13(2):71-82. PubMed ID: 23376030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aging in vertebrates, and the effect of caloric restriction: a mitochondrial free radical production-DNA damage mechanism?
    Barja G
    Biol Rev Camb Philos Soc; 2004 May; 79(2):235-51. PubMed ID: 15191224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial reactive oxygen species are scavenged by Cockayne syndrome B protein in human fibroblasts without nuclear DNA damage.
    Cleaver JE; Brennan-Minnella AM; Swanson RA; Fong KW; Chen J; Chou KM; Chen YW; Revet I; Bezrookove V
    Proc Natl Acad Sci U S A; 2014 Sep; 111(37):13487-92. PubMed ID: 25136123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hysteresis and bistability in the succinate-CoQ reductase activity and reactive oxygen species production in the mitochondrial respiratory complex II.
    Markevich NI; Galimova MH; Markevich LN
    Redox Biol; 2020 Oct; 37():101630. PubMed ID: 32747163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability of mitochondrial DNA against reactive oxygen species (ROS) generated in diabetes.
    Savu O; Sunkari VG; Botusan IR; Grünler J; Nikoshkov A; Catrina SB
    Diabetes Metab Res Rev; 2011 Jul; 27(5):470-9. PubMed ID: 21484980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aging: A mitochondrial DNA perspective, critical analysis and an update.
    Shokolenko IN; Wilson GL; Alexeyev MF
    World J Exp Med; 2014 Nov; 4(4):46-57. PubMed ID: 25414817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hepatitis C virus triggers mitochondrial permeability transition with production of reactive oxygen species, leading to DNA damage and STAT3 activation.
    Machida K; Cheng KT; Lai CK; Jeng KS; Sung VM; Lai MM
    J Virol; 2006 Jul; 80(14):7199-207. PubMed ID: 16809325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.