BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33860280)

  • 61. O-GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle to promote tumor growth.
    Nie H; Ju H; Fan J; Shi X; Cheng Y; Cang X; Zheng Z; Duan X; Yi W
    Nat Commun; 2020 Jan; 11(1):36. PubMed ID: 31911580
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Metabolic fate of glucose in rats with traumatic brain injury and pyruvate or glucose treatments: A NMR spectroscopy study.
    Shijo K; Sutton RL; Ghavim SS; Harris NG; Bartnik-Olson BL
    Neurochem Int; 2017 Jan; 102():66-78. PubMed ID: 27919624
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells.
    Feron O
    Radiother Oncol; 2009 Sep; 92(3):329-33. PubMed ID: 19604589
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism.
    Zhao H; Yang L; Baddour J; Achreja A; Bernard V; Moss T; Marini JC; Tudawe T; Seviour EG; San Lucas FA; Alvarez H; Gupta S; Maiti SN; Cooper L; Peehl D; Ram PT; Maitra A; Nagrath D
    Elife; 2016 Feb; 5():e10250. PubMed ID: 26920219
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Brain energy metabolism in a sub-acute rat model of manganese neurotoxicity: an ex vivo nuclear magnetic resonance study using [1-13C]glucose.
    Zwingmann C; Leibfritz D; Hazell AS
    Neurotoxicology; 2004 Jun; 25(4):573-87. PubMed ID: 15183011
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Glucose metabolism and regulation of glycolysis in Lactococcus lactis strains with decreased lactate dehydrogenase activity.
    Garrigues C; Goupil-Feuillerat N; Cocaign-Bousquet M; Renault P; Lindley ND; Loubiere P
    Metab Eng; 2001 Jul; 3(3):211-7. PubMed ID: 11461143
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Metabolomics reveals critical adrenergic regulatory checkpoints in glycolysis and pentose-phosphate pathways in embryonic heart.
    Peoples JNR; Maxmillian T; Le Q; Nadtochiy SM; Brookes PS; Porter GA; Davidson VL; Ebert SN
    J Biol Chem; 2018 May; 293(18):6925-6941. PubMed ID: 29540484
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Non-invasive measurements of myocardial carbon metabolism using in vivo 13C NMR spectroscopy.
    Ziegler A; Zaugg CE; Buser PT; Seelig J; Künnecke B
    NMR Biomed; 2002 May; 15(3):222-34. PubMed ID: 11968138
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The metabolic role of isoleucine in detoxification of ammonia in cultured mouse neurons and astrocytes.
    Johansen ML; Bak LK; Schousboe A; Iversen P; Sørensen M; Keiding S; Vilstrup H; Gjedde A; Ott P; Waagepetersen HS
    Neurochem Int; 2007 Jun; 50(7-8):1042-51. PubMed ID: 17346854
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Glucose fluxes in glycolytic and oxidative pathways detected in vivo by deuterium magnetic resonance spectroscopy reflect proliferation in mouse glioblastoma.
    Simões RV; Henriques RN; Cardoso BM; Fernandes FF; Carvalho T; Shemesh N
    Neuroimage Clin; 2022; 33():102932. PubMed ID: 35026626
    [TBL] [Abstract][Full Text] [Related]  

  • 72. 13C nuclear magnetic resonance evidence for gamma-aminobutyric acid formation via pyruvate carboxylase in rat brain: a metabolic basis for compartmentation.
    Brainard JR; Kyner E; Rosenberg GA
    J Neurochem; 1989 Oct; 53(4):1285-92. PubMed ID: 2769268
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Hyperpolarized 13C NMR studies of glucose metabolism in living breast cancer cell cultures.
    Harris T; Degani H; Frydman L
    NMR Biomed; 2013 Dec; 26(12):1831-43. PubMed ID: 24115045
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Analysis of hypoxia-induced metabolic reprogramming.
    Yang C; Jiang L; Zhang H; Shimoda LA; DeBerardinis RJ; Semenza GL
    Methods Enzymol; 2014; 542():425-55. PubMed ID: 24862279
    [TBL] [Abstract][Full Text] [Related]  

  • 75. New strategies for targeting glucose metabolism-mediated acidosis for colorectal cancer therapy.
    Wang G; Wang JJ; Yin PH; Xu K; Wang YZ; Shi F; Gao J; Fu XL
    J Cell Physiol; 2018 Jan; 234(1):348-368. PubMed ID: 30069931
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Regulation of myocardial [(13)C]glucose metabolism in conscious rats.
    McNulty PH; Cline GW; Whiting JM; Shulman GI
    Am J Physiol Heart Circ Physiol; 2000 Jul; 279(1):H375-81. PubMed ID: 10899078
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Potential regulation by miRNAs on glucose metabolism in liver of common carp (Cyprinus carpio) at different temperatures.
    Sun J; Liu Q; Zhao L; Cui C; Wu H; Liao L; Tang G; Yang S; Yang S
    Comp Biochem Physiol Part D Genomics Proteomics; 2019 Dec; 32():100628. PubMed ID: 31677400
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Microenvironmental control of glucose metabolism in tumors by regulation of pyruvate dehydrogenase.
    Golias T; Kery M; Radenkovic S; Papandreou I
    Int J Cancer; 2019 Feb; 144(4):674-686. PubMed ID: 30121950
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.
    Nissen JD; Pajęcka K; Stridh MH; Skytt DM; Waagepetersen HS
    Glia; 2015 Dec; 63(12):2313-26. PubMed ID: 26221781
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Quantification of compartmented metabolic fluxes in maize root tips using isotope distribution from 13C- or 14C-labeled glucose.
    Dieuaide-Noubhani M; Raffard G; Canioni P; Pradet A; Raymond P
    J Biol Chem; 1995 Jun; 270(22):13147-59. PubMed ID: 7768910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.