These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 33860373)
1. Photoreceptor phosphodiesterase (PDE6): activation and inactivation mechanisms during visual transduction in rods and cones. Cote RH Pflugers Arch; 2021 Sep; 473(9):1377-1391. PubMed ID: 33860373 [TBL] [Abstract][Full Text] [Related]
2. The N termini of the inhibitory γ-subunits of phosphodiesterase-6 (PDE6) from rod and cone photoreceptors differentially regulate transducin-mediated PDE6 activation. Wang X; Plachetzki DC; Cote RH J Biol Chem; 2019 May; 294(21):8351-8360. PubMed ID: 30962282 [TBL] [Abstract][Full Text] [Related]
3. Allosteric Regulation of Rod Photoreceptor Phosphodiesterase 6 (PDE6) Elucidated by Chemical Cross-Linking and Quantitative Mass Spectrometry. Chu F; Hogan D; Gupta R; Gao XZ; Nguyen HT; Cote RH J Mol Biol; 2019 Sep; 431(19):3677-3689. PubMed ID: 31394113 [TBL] [Abstract][Full Text] [Related]
4. Characterization of conformational changes and protein-protein interactions of rod photoreceptor phosphodiesterase (PDE6). Matte SL; Laue TM; Cote RH J Biol Chem; 2012 Jun; 287(24):20111-21. PubMed ID: 22514270 [TBL] [Abstract][Full Text] [Related]
5. Photoreceptor Phosphodiesterase (PDE6): Structure, Regulatory Mechanisms, and Implications for Treatment of Retinal Diseases. Cote RH; Gupta R; Irwin MJ; Wang X Adv Exp Med Biol; 2022; 1371():33-59. PubMed ID: 34170501 [TBL] [Abstract][Full Text] [Related]
6. Functional mapping of interacting regions of the photoreceptor phosphodiesterase (PDE6) γ-subunit with PDE6 catalytic dimer, transducin, and regulator of G-protein signaling9-1 (RGS9-1). Zhang XJ; Gao XZ; Yao W; Cote RH J Biol Chem; 2012 Jul; 287(31):26312-20. PubMed ID: 22665478 [TBL] [Abstract][Full Text] [Related]
7. The molecular architecture of photoreceptor phosphodiesterase 6 (PDE6) with activated G protein elucidates the mechanism of visual excitation. Irwin MJ; Gupta R; Gao XZ; Cahill KB; Chu F; Cote RH J Biol Chem; 2019 Dec; 294(51):19486-19497. PubMed ID: 31690623 [TBL] [Abstract][Full Text] [Related]
8. Rod phosphodiesterase-6 (PDE6) catalytic subunits restore cone function in a mouse model lacking cone PDE6 catalytic subunit. Kolandaivelu S; Chang B; Ramamurthy V J Biol Chem; 2011 Sep; 286(38):33252-9. PubMed ID: 21799013 [TBL] [Abstract][Full Text] [Related]
9. Rod phosphodiesterase-6 PDE6A and PDE6B subunits are enzymatically equivalent. Muradov H; Boyd KK; Artemyev NO J Biol Chem; 2010 Dec; 285(51):39828-34. PubMed ID: 20940301 [TBL] [Abstract][Full Text] [Related]
10. Targeted ablation of the Pde6h gene in mice reveals cross-species differences in cone and rod phototransduction protein isoform inventory. Brennenstuhl C; Tanimoto N; Burkard M; Wagner R; Bolz S; Trifunovic D; Kabagema-Bilan C; Paquet-Durand F; Beck SC; Huber G; Seeliger MW; Ruth P; Wissinger B; Lukowski R J Biol Chem; 2015 Apr; 290(16):10242-55. PubMed ID: 25739440 [TBL] [Abstract][Full Text] [Related]
11. Exchange of Cone for Rod Phosphodiesterase 6 Catalytic Subunits in Rod Photoreceptors Mimics in Part Features of Light Adaptation. Majumder A; Pahlberg J; Muradov H; Boyd KK; Sampath AP; Artemyev NO J Neurosci; 2015 Jun; 35(24):9225-35. PubMed ID: 26085644 [TBL] [Abstract][Full Text] [Related]
12. PDE6 in lamprey Petromyzon marinus: implications for the evolution of the visual effector in vertebrates. Muradov H; Boyd KK; Kerov V; Artemyev NO Biochemistry; 2007 Sep; 46(35):9992-10000. PubMed ID: 17685558 [TBL] [Abstract][Full Text] [Related]
13. Structural Analysis of the Regulatory GAF Domains of cGMP Phosphodiesterase Elucidates the Allosteric Communication Pathway. Gupta R; Liu Y; Wang H; Nordyke CT; Puterbaugh RZ; Cui W; Varga K; Chu F; Ke H; Vashisth H; Cote RH J Mol Biol; 2020 Oct; 432(21):5765-5783. PubMed ID: 32898583 [TBL] [Abstract][Full Text] [Related]
15. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones. Korenbrot JI; Rebrik TI Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the 17-kDa prenyl-binding protein as a regulatory protein for phototransduction in retinal photoreceptors. Norton AW; Hosier S; Terew JM; Li N; Dhingra A; Vardi N; Baehr W; Cote RH J Biol Chem; 2005 Jan; 280(2):1248-56. PubMed ID: 15504722 [TBL] [Abstract][Full Text] [Related]
17. Effect of the ILE86TER mutation in the γ subunit of cGMP phosphodiesterase (PDE6) on rod photoreceptor signaling. Tsang SH; Woodruff ML; Lin CS; Jacobson BD; Naumann MC; Hsu CW; Davis RJ; Cilluffo MC; Chen J; Fain GL Cell Signal; 2012 Jan; 24(1):181-8. PubMed ID: 21920434 [TBL] [Abstract][Full Text] [Related]
18. Probing the mechanism by which the retinal G protein transducin activates its biological effector PDE6. Aplin C; Cerione RA J Biol Chem; 2024 Feb; 300(2):105608. PubMed ID: 38159849 [TBL] [Abstract][Full Text] [Related]
19. It takes two transducins to activate the cGMP-phosphodiesterase 6 in retinal rods. Qureshi BM; Behrmann E; Schöneberg J; Loerke J; Bürger J; Mielke T; Giesebrecht J; Noé F; Lamb TD; Hofmann KP; Spahn CMT; Heck M Open Biol; 2018 Aug; 8(8):. PubMed ID: 30068566 [TBL] [Abstract][Full Text] [Related]
20. Quantitative aspects of cGMP phosphodiesterase activation in carp rods and cones. Koshitani Y; Tachibanaki S; Kawamura S J Biol Chem; 2014 Jan; 289(5):2651-7. PubMed ID: 24344136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]