BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 33860378)

  • 1. Performance of Low Air Volume Dry Powder Inhalers (LV-DPI) when Aerosolizing Excipient Enhanced Growth (EEG) Surfactant Powder Formulations.
    Boc S; Momin MAM; Farkas DR; Longest W; Hindle M
    AAPS PharmSciTech; 2021 Apr; 22(4):135. PubMed ID: 33860378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and Characterization of Excipient Enhanced Growth (EEG) Surfactant Powder Formulations for Treating Neonatal Respiratory Distress Syndrome.
    Boc S; Momin MAM; Farkas DR; Longest W; Hindle M
    AAPS PharmSciTech; 2021 Apr; 22(4):136. PubMed ID: 33860409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an Inline Dry Powder Inhaler That Requires Low Air Volume.
    Farkas D; Hindle M; Longest PW
    J Aerosol Med Pulm Drug Deliv; 2018 Aug; 31(4):255-265. PubMed ID: 29261454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Air-Jet Dry Powder Insufflator for High-Efficiency Aerosol Delivery to Rats.
    Pangeni R; Hassan AAM; Farkas D; Sudarjat H; Longest W; Hindle M; Xu Q
    Mol Pharm; 2023 Apr; 20(4):2207-2216. PubMed ID: 36938947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerosolization characteristics of dry powder inhaler formulations for the excipient enhanced growth (EEG) application: effect of spray drying process conditions on aerosol performance.
    Son YJ; Worth Longest P; Hindle M
    Int J Pharm; 2013 Feb; 443(1-2):137-45. PubMed ID: 23313343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a New Inhaler for High-Efficiency Dispersion of Spray-Dried Powders Using Computational Fluid Dynamics (CFD) Modeling.
    Longest W; Farkas D
    AAPS J; 2019 Feb; 21(2):25. PubMed ID: 30734133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an Inline Dry Powder Inhaler for Oral or Trans-Nasal Aerosol Administration to Children.
    Farkas D; Hindle M; Bonasera S; Bass K; Longest W
    J Aerosol Med Pulm Drug Deliv; 2020 Apr; 33(2):83-98. PubMed ID: 31464559
    [No Abstract]   [Full Text] [Related]  

  • 8. Development of a High-Dose Infant Air-Jet Dry Powder Inhaler (DPI) with Passive Cyclic Loading of the Formulation.
    Howe C; Momin MAM; Aladwani G; Hindle M; Longest PW
    Pharm Res; 2022 Dec; 39(12):3317-3330. PubMed ID: 36253630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial Development of an Air-Jet Dry Powder Inhaler for Rapid Delivery of Pharmaceutical Aerosols to Infants.
    Howe C; Hindle M; Bonasera S; Rani V; Longest PW
    J Aerosol Med Pulm Drug Deliv; 2021 Feb; 34(1):57-70. PubMed ID: 32758026
    [No Abstract]   [Full Text] [Related]  

  • 10. Application of an inline dry powder inhaler to deliver high dose pharmaceutical aerosols during low flow nasal cannula therapy.
    Farkas D; Hindle M; Longest PW
    Int J Pharm; 2018 Jul; 546(1-2):1-9. PubMed ID: 29733972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advancement of a Positive-Pressure Dry Powder Inhaler for Children: Use of a Vertical Aerosolization Chamber and Three-Dimensional Rod Array Interface.
    Farkas D; Bonasera S; Bass K; Hindle M; Longest PW
    Pharm Res; 2020 Aug; 37(9):177. PubMed ID: 32862295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a New High-Dose Dry Powder Inhaler (DPI) Based on a Fluidized Bed Design.
    Farkas DR; Hindle M; Longest PW
    Ann Biomed Eng; 2015 Nov; 43(11):2804-15. PubMed ID: 25986955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advancement of the Infant Air-Jet Dry Powder Inhaler (DPI): Evaluation of Different Positive-Pressure Air Sources and Flow Rates.
    Howe C; Momin MAM; Farkas DR; Bonasera S; Hindle M; Longest PW
    Pharm Res; 2021 Sep; 38(9):1615-1632. PubMed ID: 34462876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near Elimination of In Vitro Predicted Extrathoracic Aerosol Deposition in Children Using a Spray-Dried Antibiotic Formulation and Pediatric Air-Jet DPI.
    Farkas D; Thomas ML; Hassan A; Bonasera S; Hindle M; Longest W
    Pharm Res; 2023 May; 40(5):1193-1207. PubMed ID: 35761163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Nose-to-Lung Aerosol Delivery with an Inline DPI Requiring Low Actuation Air Volume.
    Farkas D; Hindle M; Longest PW
    Pharm Res; 2018 Aug; 35(10):194. PubMed ID: 30132207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Computational Fluid Dynamics (CFD) Dispersion Parameters in the Development of a New DPI Actuated with Low Air Volumes.
    Longest W; Farkas D; Bass K; Hindle M
    Pharm Res; 2019 May; 36(8):110. PubMed ID: 31139939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing Aerosolization Using Computational Fluid Dynamics in a Pediatric Air-Jet Dry Powder Inhaler.
    Bass K; Farkas D; Longest W
    AAPS PharmSciTech; 2019 Nov; 20(8):329. PubMed ID: 31676991
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Howe C; Momin MAM; Bass K; Aladwani G; Bonasera S; Hindle M; Longest PW
    J Aerosol Med Pulm Drug Deliv; 2022 Aug; 35(4):196-211. PubMed ID: 35166601
    [No Abstract]   [Full Text] [Related]  

  • 19. Tuning aerosol performance using the multibreath Orbital® dry powder inhaler device: controlling delivery parameters and aerosol performance via modification of puck orifice geometry.
    Zhu B; Young PM; Ong HX; Crapper J; Flodin C; Qiao EL; Phillips G; Traini D
    J Pharm Sci; 2015 Jul; 104(7):2169-76. PubMed ID: 25931324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of drug alone and carrier-based GLP-1 dry powder inhaler formulations.
    Babenko M; Alany RG; Calabrese G; Kaialy W; ElShaer A
    Int J Pharm; 2022 Apr; 617():121601. PubMed ID: 35181460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.