These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 33860427)
1. Heavy metal phytoremediation potential of the roadside forage Chloris barbata Sw. (swollen windmill grass) and the risk assessment of the forage-cattle-human food system. Madanan MT; Varghese GK; Shah IK Environ Sci Pollut Res Int; 2021 Sep; 28(33):45096-45108. PubMed ID: 33860427 [TBL] [Abstract][Full Text] [Related]
2. Regional monitoring of lead and cadmium contamination in a tropical grazing land site, Thailand. Parkpian P; Leong ST; Laortanakul P; Thunthaisong N Environ Monit Assess; 2003 Jun; 85(2):157-73. PubMed ID: 12828350 [TBL] [Abstract][Full Text] [Related]
3. Heavy metal concentrations in roadside plants (Achillea wilhelmsii and Cardaria draba) and soils along some highways in Hamedan, west of Iran. Hosseini NS; Sobhanardakani S; Cheraghi M; Lorestani B; Merrikhpour H Environ Sci Pollut Res Int; 2020 Apr; 27(12):13301-13314. PubMed ID: 32020453 [TBL] [Abstract][Full Text] [Related]
4. Relationship between heavy metal concentrations in soils and grasses of roadside farmland in Nepal. Yan X; Zhang F; Zeng C; Zhang M; Devkota LP; Yao T Int J Environ Res Public Health; 2012 Sep; 9(9):3209-26. PubMed ID: 23202679 [TBL] [Abstract][Full Text] [Related]
5. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru). Chang Kee J; Gonzales MJ; Ponce O; Ramírez L; León V; Torres A; Corpus M; Loayza-Muro R Environ Sci Pollut Res Int; 2018 Dec; 25(34):33957-33966. PubMed ID: 30280335 [TBL] [Abstract][Full Text] [Related]
6. Assessment of heavy metal concentrations in roadside soils and plants around the Dexing copper mine: implications for environmental management and remediation. Wan Y; Peng M; Wang YP Environ Monit Assess; 2024 Feb; 196(3):251. PubMed ID: 38340265 [TBL] [Abstract][Full Text] [Related]
7. Phytoassessment of Vetiver grass enhanced with EDTA soil amendment grown in single and mixed heavy metal-contaminted soil. Ng CC; Boyce AN; Abas MR; Mahmood NZ; Han F Environ Monit Assess; 2019 Jun; 191(7):434. PubMed ID: 31201562 [TBL] [Abstract][Full Text] [Related]
8. Concentrations of heavy metals in roadside soils, plants, and landsnails from the West Bank, Palestine. Swaileh KM; Rabay'a N; Salim R; Ezzughayyar A; Rabbo AA J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001 May; 36(5):765-78. PubMed ID: 11460330 [TBL] [Abstract][Full Text] [Related]
9. Accumulation of Heavy Metals in Roadside Soil in Urban Area and the Related Impacting Factors. Wang M; Zhang H Int J Environ Res Public Health; 2018 May; 15(6):. PubMed ID: 29794996 [TBL] [Abstract][Full Text] [Related]
10. Metals in agricultural produce associated with acid-mine drainage in Mount Morgan (Queensland, Australia). Vicente-Beckett VA; McCauley GJ; Duivenvoorden LJ J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(7):561-70. PubMed ID: 26979303 [TBL] [Abstract][Full Text] [Related]
11. Cadmium, copper, lead and zinc accumulation in wild plant species near a lead smelter. Xing W; Liu H; Banet T; Wang H; Ippolito JA; Li L Ecotoxicol Environ Saf; 2020 Jul; 198():110683. PubMed ID: 32361499 [TBL] [Abstract][Full Text] [Related]
12. Phytoremediation potential of Arundo donax (Giant Reed) in contaminated soil by heavy metals. Cristaldi A; Oliveri Conti G; Cosentino SL; Mauromicale G; Copat C; Grasso A; Zuccarello P; Fiore M; Restuccia C; Ferrante M Environ Res; 2020 Jun; 185():109427. PubMed ID: 32247150 [TBL] [Abstract][Full Text] [Related]
13. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India. Mukhopadhyay S; Rana V; Kumar A; Maiti SK Environ Sci Pollut Res Int; 2017 Oct; 24(29):22990-23005. PubMed ID: 28819831 [TBL] [Abstract][Full Text] [Related]
14. Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China. Bi C; Zhou Y; Chen Z; Jia J; Bao X Sci Total Environ; 2018 Apr; 619-620():1349-1357. PubMed ID: 29734612 [TBL] [Abstract][Full Text] [Related]
15. The yield potential and growth responses of licorice ( Tabrizi L; Lakzaei M; Motesharezadeh B Int J Phytoremediation; 2021; 23(3):316-327. PubMed ID: 32898452 [TBL] [Abstract][Full Text] [Related]
16. Heavy metal enrichment in roadside soils in the eastern Tibetan Plateau. Guan ZH; Li XG; Wang L Environ Sci Pollut Res Int; 2018 Mar; 25(8):7625-7637. PubMed ID: 29285695 [TBL] [Abstract][Full Text] [Related]
17. Comparative assessment of using Miscanthus × giganteus for remediation of soils contaminated by heavy metals: a case of military and mining sites. Nurzhanova A; Pidlisnyuk V; Abit K; Nurzhanov C; Kenessov B; Stefanovska T; Erickson L Environ Sci Pollut Res Int; 2019 May; 26(13):13320-13333. PubMed ID: 30903469 [TBL] [Abstract][Full Text] [Related]
18. Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China. Chen X; Xia X; Zhao Y; Zhang P J Hazard Mater; 2010 Sep; 181(1-3):640-6. PubMed ID: 20541319 [TBL] [Abstract][Full Text] [Related]
19. Phytoremediation potential of vetiver grass irrigated with wastewater for treatment of metal contaminated soil. Kafil M; Boroomand Nasab S; Moazed H; Bhatnagar A Int J Phytoremediation; 2019; 21(2):92-100. PubMed ID: 30656949 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of the potential of Erodium glaucophyllum L. for phytoremediation of metal-polluted arid soils. Jeddi K; Chaieb M Environ Sci Pollut Res Int; 2018 Dec; 25(36):36636-36644. PubMed ID: 30377962 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]