BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33860849)

  • 1. A new approach for calculating microalgae culture growth based on an inhibitory effect of the surrounding biomass.
    Jung SH; McHardy C; Rauh C; Jahn A; Luzi G; Delgado A; Buchholz R; Lindenberger C
    Bioprocess Biosyst Eng; 2021 Aug; 44(8):1671-1684. PubMed ID: 33860849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A screening model to predict microalgae biomass growth in photobioreactors and raceway ponds.
    Huesemann MH; Van Wagenen J; Miller T; Chavis A; Hobbs S; Crowe B
    Biotechnol Bioeng; 2013 Jun; 110(6):1583-94. PubMed ID: 23280255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-supported phototrophic growth studies with Scenedesmus obtusiusculus in a flat-plate photobioreactor.
    Koller AP; Löwe H; Schmid V; Mundt S; Weuster-Botz D
    Biotechnol Bioeng; 2017 Feb; 114(2):308-320. PubMed ID: 27530806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects.
    Janssen M; Tramper J; Mur LR; Wijffels RH
    Biotechnol Bioeng; 2003 Jan; 81(2):193-210. PubMed ID: 12451556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photobioreactors for mass cultivation of algae.
    Ugwu CU; Aoyagi H; Uchiyama H
    Bioresour Technol; 2008 Jul; 99(10):4021-8. PubMed ID: 17379512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives.
    Glemser M; Heining M; Schmidt J; Becker A; Garbe D; Buchholz R; Brück T
    Appl Microbiol Biotechnol; 2016 Feb; 100(3):1077-1088. PubMed ID: 26590582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Luminostat operation: a tool to maximize microalgae photosynthetic efficiency in photobioreactors during the daily light cycle?
    Cuaresma M; Janssen M; van den End EJ; Vílchez C; Wijffels RH
    Bioresour Technol; 2011 Sep; 102(17):7871-8. PubMed ID: 21680180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofilm cultivation of the oleaginous microalgae Pseudochlorococcum sp.
    Ji B; Zhang W; Zhang N; Wang J; Lutzu GA; Liu T
    Bioprocess Biosyst Eng; 2014 Jul; 37(7):1369-75. PubMed ID: 24362561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the oxygen inhibition in microalgae: An experimental approach based on photorespirometry.
    Sforza E; Pastore M; Franke SM; Barbera E
    N Biotechnol; 2020 Nov; 59():26-32. PubMed ID: 32683047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive computational model for combining fluid hydrodynamics, light transport and biomass growth in a Taylor vortex algal photobioreactor: Lagrangian approach.
    Gao X; Kong B; Vigil RD
    Bioresour Technol; 2017 Jan; 224():523-530. PubMed ID: 27839859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Patented photobioreactor to commercial production of new drugs and nutraceuticals from microalgae].
    Talbierz S; Kujawska N; Latała A
    Przegl Lek; 2012; 69(10):1031-4. PubMed ID: 23421085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimensionless equations to describe microalgal growth in a planar cultivation system.
    Jeffryes C; Li J; Agathos SN
    Biotechnol Lett; 2015 Nov; 37(11):2167-71. PubMed ID: 26133489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and theoretical assessment of maximum productivities for the microalgae Chlamydomonas reinhardtii in two different geometries of photobioreactors.
    Takache H; Christophe G; Cornet JF; Pruvost J
    Biotechnol Prog; 2010; 26(2):431-40. PubMed ID: 19953604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-dependent growth kinetics enable scale-up of well-mixed phototrophic bioprocesses in different types of photobioreactors.
    Pfaffinger CE; Severin TS; Apel AC; Göbel J; Sauter J; Weuster-Botz D
    J Biotechnol; 2019 May; 297():41-48. PubMed ID: 30898687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microalgae cultivation in air-lift reactors: modeling biomass yield and growth rate as a function of mixing frequency.
    Barbosa MJ; Janssen M; Ham N; Tramper J; Wijffels RH
    Biotechnol Bioeng; 2003 Apr; 82(2):170-9. PubMed ID: 12584758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal proteome allocation strategies for phototrophic growth in a light-limited chemostat.
    Faizi M; Steuer R
    Microb Cell Fact; 2019 Oct; 18(1):165. PubMed ID: 31601201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergising biomass growth kinetics and transport mechanisms to simulate light/dark cycle effects on photo-production systems.
    Anye Cho B; de Carvalho Servia MÁ; Del Río Chanona EA; Smith R; Zhang D
    Biotechnol Bioeng; 2021 May; 118(5):1932-1942. PubMed ID: 33547805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of photobioreactors in series.
    Diehl S; Zambrano J; Carlsson B
    Math Biosci; 2018 Dec; 306():107-118. PubMed ID: 30059663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flashing light in microalgae biotechnology.
    Abu-Ghosh S; Fixler D; Dubinsky Z; Iluz D
    Bioresour Technol; 2016 Mar; 203():357-63. PubMed ID: 26747205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal Reactor Model for Large-Scale Algae Cultivation in Vertical Flat Panel Photobioreactors.
    Endres CH; Roth A; Brück TB
    Environ Sci Technol; 2016 Apr; 50(7):3920-7. PubMed ID: 26950078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.