These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
669 related articles for article (PubMed ID: 33860983)
21. Progress in understanding COVID-19: insights from the omics approach. Lin B; Liu J; Liu Y; Qin X Crit Rev Clin Lab Sci; 2021 Jun; 58(4):242-252. PubMed ID: 33375876 [TBL] [Abstract][Full Text] [Related]
22. Surface proteomic analysis of osteosarcoma identifies EPHA2 as receptor for targeted drug delivery. Posthumadeboer J; Piersma SR; Pham TV; van Egmond PW; Knol JC; Cleton-Jansen AM; van Geer MA; van Beusechem VW; Kaspers GJ; van Royen BJ; Jiménez CR; Helder MN Br J Cancer; 2013 Oct; 109(8):2142-54. PubMed ID: 24064975 [TBL] [Abstract][Full Text] [Related]
23. Identifying potential drug targets and candidate drugs for COVID-19: biological networks and structural modeling approaches. Selvaraj G; Kaliamurthi S; Peslherbe GH; Wei DQ F1000Res; 2021; 10():127. PubMed ID: 33968364 [No Abstract] [Full Text] [Related]
24. The SARS-CoV-2 RNA-protein interactome in infected human cells. Schmidt N; Lareau CA; Keshishian H; Ganskih S; Schneider C; Hennig T; Melanson R; Werner S; Wei Y; Zimmer M; Ade J; Kirschner L; Zielinski S; Dölken L; Lander ES; Caliskan N; Fischer U; Vogel J; Carr SA; Bodem J; Munschauer M Nat Microbiol; 2021 Mar; 6(3):339-353. PubMed ID: 33349665 [TBL] [Abstract][Full Text] [Related]
25. Targeted proteomics as a tool to detect SARS-CoV-2 proteins in clinical specimens. Bezstarosti K; Lamers MM; Doff WAS; Wever PC; Thai KTD; van Kampen JJA; Haagmans BL; Demmers JAA PLoS One; 2021; 16(11):e0259165. PubMed ID: 34762662 [TBL] [Abstract][Full Text] [Related]
26. The Impact of Serum/Plasma Proteomics on SARS-CoV-2 Diagnosis and Prognosis. D'Amato M; Grignano MA; Iadarola P; Rampino T; Gregorini M; Viglio S Int J Mol Sci; 2024 Aug; 25(16):. PubMed ID: 39201322 [TBL] [Abstract][Full Text] [Related]
27. Longitudinal proteomic profiling provides insights into host response and proteome dynamics in COVID-19 progression. Lee JS; Han D; Kim SY; Hong KH; Jang MJ; Kim MJ; Kim YG; Park JH; Cho SI; Park WB; Lee KB; Shin HS; Oh HS; Kim TS; Park SS; Seong MW Proteomics; 2021 Jun; 21(11-12):e2000278. PubMed ID: 33945677 [TBL] [Abstract][Full Text] [Related]
28. Application of mass spectrometry based proteomics to understand diabetes: A special focus on interactomics. Kalita B; Bano S; Vavachan VM; Taunk K; Seshadri V; Rapole S Biochim Biophys Acta Proteins Proteom; 2020 Oct; 1868(10):140469. PubMed ID: 32554214 [TBL] [Abstract][Full Text] [Related]
29. Dynamic profiling of the post-translational modifications and interaction partners of epidermal growth factor receptor signaling after stimulation by epidermal growth factor using Extended Range Proteomic Analysis (ERPA). Wu SL; Kim J; Bandle RW; Liotta L; Petricoin E; Karger BL Mol Cell Proteomics; 2006 Sep; 5(9):1610-27. PubMed ID: 16799092 [TBL] [Abstract][Full Text] [Related]
38. Virus-Host Interactome and Proteomic Survey Reveal Potential Virulence Factors Influencing SARS-CoV-2 Pathogenesis. Li J; Guo M; Tian X; Wang X; Yang X; Wu P; Liu C; Xiao Z; Qu Y; Yin Y; Wang C; Zhang Y; Zhu Z; Liu Z; Peng C; Zhu T; Liang Q Med; 2021 Jan; 2(1):99-112.e7. PubMed ID: 32838362 [TBL] [Abstract][Full Text] [Related]
39. The life cycle and pathogenesis of human cytomegalovirus infection: lessons from proteomics. Jean Beltran PM; Cristea IM Expert Rev Proteomics; 2014 Dec; 11(6):697-711. PubMed ID: 25327590 [TBL] [Abstract][Full Text] [Related]