These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33861121)

  • 21. Encoding of memory in sheared amorphous solids.
    Fiocco D; Foffi G; Sastry S
    Phys Rev Lett; 2014 Jan; 112(2):025702. PubMed ID: 24484027
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatiotemporal correlations between plastic events in the shear flow of athermal amorphous solids.
    Nicolas A; Rottler J; Barrat JL
    Eur Phys J E Soft Matter; 2014 Jun; 37(6):9. PubMed ID: 24965153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identifying microscopic factors that influence ductility in disordered solids.
    Xiao H; Zhang G; Yang E; Ivancic R; Ridout S; Riggleman R; Durian DJ; Liu AJ
    Proc Natl Acad Sci U S A; 2023 Oct; 120(42):e2307552120. PubMed ID: 37812709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coordinate transformation methodology for simulating quasistatic elastoplastic solids.
    Boffi NM; Rycroft CH
    Phys Rev E; 2020 May; 101(5-1):053304. PubMed ID: 32575210
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Connecting microscopic and mesoscopic mechanics in model structural glasses.
    Richard D
    J Chem Phys; 2024 Mar; 160(9):. PubMed ID: 38441260
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fracture in glassy polymers: a molecular modeling perspective.
    Rottler J
    J Phys Condens Matter; 2009 Nov; 21(46):463101. PubMed ID: 21715863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scaling Description of Creep Flow in Amorphous Solids.
    Popović M; de Geus TWJ; Ji W; Rosso A; Wyart M
    Phys Rev Lett; 2022 Nov; 129(20):208001. PubMed ID: 36462015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Creep and flow of glasses: strain response linked to the spatial distribution of dynamical heterogeneities.
    Sentjabrskaja T; Chaudhuri P; Hermes M; Poon WC; Horbach J; Egelhaaf SU; Laurati M
    Sci Rep; 2015 Jul; 5():11884. PubMed ID: 26153523
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scaling of relaxation and excess entropy in plastically deformed amorphous solids.
    Galloway KL; Ma X; Keim NC; Jerolmack DJ; Yodh AG; Arratia PE
    Proc Natl Acad Sci U S A; 2020 Jun; 117(22):11887-11893. PubMed ID: 32430317
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Linking attractive interactions and confinement to the rheological response of suspended particles close to jamming.
    Jones MA; Ness C
    Granul Matter; 2018; 20(1):3. PubMed ID: 31983891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluctuating hydrodynamics simulations of coarse-grained lipid membranes under steady-state conditions and in shear flow.
    Brandt EG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012714. PubMed ID: 23944498
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical Yield in Amorphous Solids: A First-Order Phase Transition.
    Jaiswal PK; Procaccia I; Rainone C; Singh M
    Phys Rev Lett; 2016 Feb; 116(8):085501. PubMed ID: 26967423
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coarse graining atomistic simulations of plastically deforming amorphous solids.
    Hinkle AR; Rycroft CH; Shields MD; Falk ML
    Phys Rev E; 2017 May; 95(5-1):053001. PubMed ID: 28618619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Avalanche Behavior in Creep Failure of Disordered Materials.
    Castellanos DF; Zaiser M
    Phys Rev Lett; 2018 Sep; 121(12):125501. PubMed ID: 30296108
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mean-Field Scenario for the Athermal Creep Dynamics of Yield-Stress Fluids.
    Liu C; Martens K; Barrat JL
    Phys Rev Lett; 2018 Jan; 120(2):028004. PubMed ID: 29376717
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Yield stress in amorphous solids: a mode-coupling-theory analysis.
    Ikeda A; Berthier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052305. PubMed ID: 24329262
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Power fluctuations in sheared amorphous materials: A minimal model.
    Ekeh T; Fodor É; Fielding SM; Cates ME
    Phys Rev E; 2022 May; 105(5):L052601. PubMed ID: 35706183
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Confined molecules under shear: from a microscopic description to phenomenology.
    Filippov AE; Klafter J; Urbakh M
    Phys Rev Lett; 2001 Dec; 87(27 Pt 1):275506. PubMed ID: 11800895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Timescales in creep and yielding of attractive gels.
    Grenard V; Divoux T; Taberlet N; Manneville S
    Soft Matter; 2014 Mar; 10(10):1555-71. PubMed ID: 24651869
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Orientation of plastic rearrangements in two-dimensional model glasses under shear.
    Nicolas A; Rottler J
    Phys Rev E; 2018 Jun; 97(6-1):063002. PubMed ID: 30011591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.