These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 338612)

  • 1. Presence of adipose fat as a criterion of implant compatibility.
    Kaminski EJ; Shenk MW; Oglesby RJ
    J Biomed Mater Res; 1977 Nov; 11(6):871-81. PubMed ID: 338612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presence of adipose fat as a criterion of implant compatibility.
    Kaminski EJ; Shenk MW; Oglesby RJ
    Ill Dent J; 1978 Jun; 47(6):314-7. PubMed ID: 285016
    [No Abstract]   [Full Text] [Related]  

  • 3. Fibrous capsule formation in response to ultrahigh molecular weight polyethylene treated with peptides that influence adhesion.
    Johnson R; Harrison D; Tucci M; Tsao A; Lemos M; Puckett A; Hughes JL; Benghuzzi H
    Biomed Sci Instrum; 1997; 34():47-52. PubMed ID: 9603011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Difference in metallic wear distribution released from commercially pure titanium compared with stainless steel plates.
    Krischak GD; Gebhard F; Mohr W; Krivan V; Ignatius A; Beck A; Wachter NJ; Reuter P; Arand M; Kinzl L; Claes LE
    Arch Orthop Trauma Surg; 2004 Mar; 124(2):104-13. PubMed ID: 14727127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility of Delrin 150: a creep-resistant polymer for total joint prostheses.
    Fister JS; Memoli VA; Galante JO; Rostoker W; Urban RM
    J Biomed Mater Res; 1985; 19(5):519-33. PubMed ID: 4066726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compatibility of biomaterials.
    Laing PG
    Orthop Clin North Am; 1973 Apr; 4(2):249-73. PubMed ID: 4575025
    [No Abstract]   [Full Text] [Related]  

  • 7. [Biological evaluation of In-Ceram-ceramics compared to cobalt-base-alloys and the metals titanium, tantalum and niobium in animal experiments].
    Limberger F; Lenz E
    Dtsch Stomatol (1990); 1991; 41(11):407-10. PubMed ID: 1817651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The quantification of cellular viability and inflammatory response to stainless steel alloys.
    Bailey LO; Lippiatt S; Biancanello FS; Ridder SD; Washburn NR
    Biomaterials; 2005 Sep; 26(26):5296-302. PubMed ID: 15814127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomaterial optimization in total disc arthroplasty.
    Hallab N; Link HD; McAfee PC
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S139-52. PubMed ID: 14560185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Estimation of biocompatibility of fibers with large mechanical resistance].
    Zywicka B
    Polim Med; 2004; 34(3):3-48. PubMed ID: 15631154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue response to polyglycolide, polydioxanone, polylevolactide, and metallic pins in cancellous bone: An experimental study on rabbits.
    Pihlajamäki H; Salminen S; Laitinen O; Tynninen O; Böstman O
    J Orthop Res; 2006 Aug; 24(8):1597-606. PubMed ID: 16779815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Tissue reaction after implantation of ceramic biomaterials with introduced electrokinetic zeta potential on surface].
    Lewandowski R; Rutowski R; Staniszewska-Kuś J; Pielka S; Wnukiewicz B
    Polim Med; 2004; 34(1):13-25. PubMed ID: 15222224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcutaneous implants: reactions of the skin-implant interface.
    Winter GD
    J Biomed Mater Res; 1974; 8(3):99-113. PubMed ID: 4616966
    [No Abstract]   [Full Text] [Related]  

  • 14. [Histocompatibility of implant materials--animal model criteria and findings].
    Reuling N; Keil M; Pohl-Reuling B
    Dtsch Zahnarztl Z; 1991 Oct; 46(10):694-8. PubMed ID: 1817866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One year histopathological evaluation of fibrous tissue surrounding TCPL implants using adult rats as a model.
    Butler K; Benghuzzi H; Bajpai P; Puckett A; Tucci M; Cason Z; England B
    Biomed Sci Instrum; 1997; 33():233-9. PubMed ID: 9731364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of poly(DTH carbonate), a tyrosine-derived degradable polymer, for orthopedic applications.
    Ertel SI; Kohn J; Zimmerman MC; Parsons JR
    J Biomed Mater Res; 1995 Nov; 29(11):1337-48. PubMed ID: 8582902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of self-reinforced polyglycolide membrane implanted in the subcutis of rabbits.
    Ruuskanen M; Ashammakhi N; Kallioinen M; Pohjonen T; Törmälä P; Waris T
    Ann Chir Gynaecol; 1999; 88(4):308-12. PubMed ID: 10661830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of the cellular components of the fibrous tissue matrix surrounding ALCAP, HA, and TCP bioceramics using adult male rats as a model.
    Butler K; Puckett A; Benghuzzi H
    Biomed Sci Instrum; 1999; 35():267-72. PubMed ID: 11143360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rabbit muscle and urethral in situ biocompatibility properties of the self-reinforced L-lactide-glycolic acid copolymer 80: 20 spiral stent.
    Laaksovirta S; Laurila M; Isotalo T; Välimaa T; Tammela TL; Törmälä P; Talja M
    J Urol; 2002 Mar; 167(3):1527-31. PubMed ID: 11832782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hard, soft tissue and in vitro cell response to porous nickel-titanium: a biocompatibility evaluation.
    Rhalmi S; Odin M; Assad M; Tabrizian M; Rivard CH; Yahia LH
    Biomed Mater Eng; 1999; 9(3):151-62. PubMed ID: 10572619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.