These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 33861225)
1. High throughput transepithelial electrical resistance (TEER) measurements on perfused membrane-free epithelia. Nicolas A; Schavemaker F; Kosim K; Kurek D; Haarmans M; Bulst M; Lee K; Wegner S; Hankemeier T; Joore J; Domansky K; Lanz HL; Vulto P; Trietsch SJ Lab Chip; 2021 May; 21(9):1676-1685. PubMed ID: 33861225 [TBL] [Abstract][Full Text] [Related]
2. Measuring direct current trans-epithelial electrical resistance in organ-on-a-chip microsystems. Odijk M; van der Meer AD; Levner D; Kim HJ; van der Helm MW; Segerink LI; Frimat JP; Hamilton GA; Ingber DE; van den Berg A Lab Chip; 2015 Feb; 15(3):745-52. PubMed ID: 25427650 [TBL] [Abstract][Full Text] [Related]
3. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips. J Vis Exp; 2019 May; (147):. PubMed ID: 31067212 [TBL] [Abstract][Full Text] [Related]
4. Direct quantification of transendothelial electrical resistance in organs-on-chips. van der Helm MW; Odijk M; Frimat JP; van der Meer AD; Eijkel JCT; van den Berg A; Segerink LI Biosens Bioelectron; 2016 Nov; 85():924-929. PubMed ID: 27315517 [TBL] [Abstract][Full Text] [Related]
5. Non-invasive sensing of transepithelial barrier function and tissue differentiation in organs-on-chips using impedance spectroscopy. van der Helm MW; Henry OYF; Bein A; Hamkins-Indik T; Cronce MJ; Leineweber WD; Odijk M; van der Meer AD; Eijkel JCT; Ingber DE; van den Berg A; Segerink LI Lab Chip; 2019 Jan; 19(3):452-463. PubMed ID: 30632575 [TBL] [Abstract][Full Text] [Related]
7. Vascular inflammation on a chip: A scalable platform for trans-endothelial electrical resistance and immune cell migration. Ehlers H; Nicolas A; Schavemaker F; Heijmans JPM; Bulst M; Trietsch SJ; van den Broek LJ Front Immunol; 2023; 14():1118624. PubMed ID: 36761747 [TBL] [Abstract][Full Text] [Related]
8. Intestinal Epithelium Tubules on a Chip. Kosim K; Schilt I; Lanz HL; Vulto P; Kurek D Methods Mol Biol; 2022; 2373():87-105. PubMed ID: 34520008 [TBL] [Abstract][Full Text] [Related]
9. Advances in TEER measurements of biological barriers in microphysiological systems. Nazari H; Shrestha J; Naei VY; Bazaz SR; Sabbagh M; Thiery JP; Warkiani ME Biosens Bioelectron; 2023 Aug; 234():115355. PubMed ID: 37159988 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of rapid transepithelial electrical resistance (TEER) measurement as a metric of kidney toxicity in a high-throughput microfluidic culture system. Shaughnessey EM; Kann SH; Azizgolshani H; Black LD; Charest JL; Vedula EM Sci Rep; 2022 Aug; 12(1):13182. PubMed ID: 35915212 [TBL] [Abstract][Full Text] [Related]
12. Organs-on-chips with integrated electrodes for trans-epithelial electrical resistance (TEER) measurements of human epithelial barrier function. Henry OYF; Villenave R; Cronce MJ; Leineweber WD; Benz MA; Ingber DE Lab Chip; 2017 Jun; 17(13):2264-2271. PubMed ID: 28598479 [TBL] [Abstract][Full Text] [Related]
13. Temperature corrected transepithelial electrical resistance (TEER) measurement to quantify rapid changes in paracellular permeability. Blume LF; Denker M; Gieseler F; Kunze T Pharmazie; 2010 Jan; 65(1):19-24. PubMed ID: 20187574 [TBL] [Abstract][Full Text] [Related]
14. GLP-2 enhances barrier formation and attenuates TNFα-induced changes in a Caco-2 cell model of the intestinal barrier. Moran GW; O'Neill C; McLaughlin JT Regul Pept; 2012 Oct; 178(1-3):95-101. PubMed ID: 22809889 [TBL] [Abstract][Full Text] [Related]
15. Automated measurement of transepithelial electrical resistance (TEER) in 96-well transwells using ECIS TEER96: Single and multiple time point assessments. Schimetz J; Shah P; Keese C; Dehnert C; Detweiler M; Michael S; Toniatti-Yanulavich C; Xu X; Padilha EC SLAS Technol; 2024 Feb; 29(1):100116. PubMed ID: 37923083 [TBL] [Abstract][Full Text] [Related]
16. A 3D bioprinted hydrogel gut-on-chip with integrated electrodes for transepithelial electrical resistance (TEER) measurements. Vera D; García-Díaz M; Torras N; Castillo Ó; Illa X; Villa R; Alvarez M; Martinez E Biofabrication; 2024 Apr; 16(3):. PubMed ID: 38574551 [TBL] [Abstract][Full Text] [Related]
17. A microfluidic bioreactor with integrated transepithelial electrical resistance (TEER) measurement electrodes for evaluation of renal epithelial cells. Ferrell N; Desai RR; Fleischman AJ; Roy S; Humes HD; Fissell WH Biotechnol Bioeng; 2010 Nov; 107(4):707-16. PubMed ID: 20552673 [TBL] [Abstract][Full Text] [Related]
19. Modulation of the tight junctions of the Caco-2 cell monolayers by H2-antagonists. Gan LS; Yanni S; Thakker DR Pharm Res; 1998 Jan; 15(1):53-7. PubMed ID: 9487546 [TBL] [Abstract][Full Text] [Related]
20. Organ-on-a-Chip Platform with an Integrated Screen-Printed Electrode Array for Real-Time Monitoring Trans-Epithelial Barrier and Bubble Formation. Krishnakumar A; Kadian S; Heredia Rivera U; Chittiboyina S; Lelièvre SA; Rahimi R ACS Biomater Sci Eng; 2023 Mar; 9(3):1620-1628. PubMed ID: 36763005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]