BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33861294)

  • 1. Goodbye fouling: a unique coaxial lamination mixer (CLM) enabled by two-photon polymerization for the stable production of monodisperse drug carrier nanoparticles.
    Erfle P; Riewe J; Bunjes H; Dietzel A
    Lab Chip; 2021 Jun; 21(11):2178-2193. PubMed ID: 33861294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Horseshoe lamination mixer (HLM) sets new standards in the production of monodisperse lipid nanoparticles.
    Erfle P; Riewe J; Cai S; Bunjes H; Dietzel A
    Lab Chip; 2022 Aug; 22(16):3025-3044. PubMed ID: 35829631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Digital Twin of the Coaxial Lamination Mixer for the Systematic Study of Mixing Performance and the Prediction of Precipitated Nanoparticle Properties.
    Cai S; Erfle P; Dietzel A
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antisolvent precipitation of lipid nanoparticles in microfluidic systems - A comparative study.
    Riewe J; Erfle P; Melzig S; Kwade A; Dietzel A; Bunjes H
    Int J Pharm; 2020 Apr; 579():119167. PubMed ID: 32087265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilized Production of Lipid Nanoparticles of Tunable Size in Taylor Flow Glass Devices with High-Surface-Quality 3D Microchannels.
    Erfle P; Riewe J; Bunjes H; Dietzel A
    Micromachines (Basel); 2019 Mar; 10(4):. PubMed ID: 30934803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An inert 3D emulsification device for individual precipitation and concentration of amorphous drug nanoparticles.
    Lorenz T; Bojko S; Bunjes H; Dietzel A
    Lab Chip; 2018 Feb; 18(4):627-638. PubMed ID: 29345261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Preparation of Nanoparticles Using Poly(ethylene Glycol)-distearoylphosphatidylethanolamine for Solubilizing Poorly Soluble Drugs.
    Terada T; Kanou M; Hashimoto Y; Tanimoto M; Sugimoto M
    J Pharm Sci; 2022 Jun; 111(6):1709-1718. PubMed ID: 34863973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translational formulation of nanoparticle therapeutics from laboratory discovery to clinical scale.
    Feng J; Markwalter CE; Tian C; Armstrong M; Prud'homme RK
    J Transl Med; 2019 Jun; 17(1):200. PubMed ID: 31200738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs.
    Dong Y; Ng WK; Hu J; Shen S; Tan RB
    Int J Pharm; 2010 Feb; 386(1-2):256-61. PubMed ID: 19922777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous production of celecoxib nanoparticles using a three-dimensional-coaxial-flow microfluidic platform.
    Di D; Qu X; Liu C; Fang L; Quan P
    Int J Pharm; 2019 Dec; 572():118831. PubMed ID: 31715344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous synthesis of drug-loaded nanoparticles using microchannel emulsification and numerical modeling: effect of passive mixing.
    Ortiz de Solorzano I; Uson L; Larrea A; Miana M; Sebastian V; Arruebo M
    Int J Nanomedicine; 2016; 11():3397-416. PubMed ID: 27524896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle size tailoring of ursolic acid nanosuspensions for improved anticancer activity by controlled antisolvent precipitation.
    Wang Y; Song J; Chow SF; Chow AH; Zheng Y
    Int J Pharm; 2015 Oct; 494(1):479-89. PubMed ID: 26302857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carrier particle design for stabilization and isolation of drug nanoparticles.
    Tierney T; Bodnár K; Rasmuson Å; Hudson S
    Int J Pharm; 2017 Feb; 518(1-2):111-118. PubMed ID: 27884714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antisolvent fabrication of monodisperse liposomes using novel ultrasonic microreactors: Process optimization, performance comparison and intensification effect.
    Peng C; Zhu X; Zhang J; Zhao W; Jia J; Wu Z; Yu Z; Dong Z
    Ultrason Sonochem; 2024 Feb; 103():106769. PubMed ID: 38266590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles.
    Tao J; Chow SF; Zheng Y
    Acta Pharm Sin B; 2019 Jan; 9(1):4-18. PubMed ID: 30766774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyurethane and polyurea nanoparticles based on polyoxyethylene castor oil derivative surfactant suitable for endovascular applications.
    Morral-Ruíz G; Melgar-Lesmes P; García ML; Solans C; García-Celma MJ
    Int J Pharm; 2014 Jan; 461(1-2):1-13. PubMed ID: 24275445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple confined impingement jets mixer for flash nanoprecipitation.
    Han J; Zhu Z; Qian H; Wohl AR; Beaman CJ; Hoye TR; Macosko CW
    J Pharm Sci; 2012 Oct; 101(10):4018-23. PubMed ID: 22777753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of nanoemulsions and solid lipid nanoparticles by premix membrane emulsification.
    Joseph S; Bunjes H
    J Pharm Sci; 2012 Jul; 101(7):2479-89. PubMed ID: 22527807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid lipid nanoparticles: continuous and potential large-scale nanoprecipitation production in static mixers.
    Dong Y; Ng WK; Shen S; Kim S; Tan RB
    Colloids Surf B Biointerfaces; 2012 Jun; 94():68-72. PubMed ID: 22326649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monodisperse Micro-Oil Droplets Stabilized by Polymerizable Phospholipid Coatings as Potential Drug Carriers.
    Park Y; Pham TA; Beigie C; Cabodi M; Cleveland RO; Nagy JO; Wong JY
    Langmuir; 2015 Sep; 31(36):9762-70. PubMed ID: 26303989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.