BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33861606)

  • 1. Gold Nanostar Spatial Distribution Impacts the Surface-Enhanced Raman Scattering Detection of Uranyl on Amidoximated Polymers.
    Phan HT; Vinson C; Haes AJ
    Langmuir; 2021 Apr; 37(16):4891-4899. PubMed ID: 33861606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning gold nanostar morphology for the SERS detection of uranyl.
    Harder RA; Wijenayaka LA; Phan HT; Haes AJ
    J Raman Spectrosc; 2021 Feb; 52(2):497-505. PubMed ID: 34177076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matrix-Independent Surface-Enhanced Raman Scattering Detection of Uranyl Using Electrospun Amidoximated Polyacrylonitrile Mats and Gold Nanostars.
    Lu G; Johns AJ; Neupane B; Phan HT; Cwiertny DM; Forbes TZ; Haes AJ
    Anal Chem; 2018 Jun; 90(11):6766-6772. PubMed ID: 29741873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SERS detection of uranyl using functionalized gold nanostars promoted by nanoparticle shape and size.
    Lu G; Forbes TZ; Haes AJ
    Analyst; 2016 Aug; 141(17):5137-43. PubMed ID: 27326897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral Characterization and Intracellular Detection of Surface-Enhanced Raman Scattering (SERS)-Encoded Plasmonic Gold Nanostars.
    Yuan H; Fales AM; Khoury CG; Liu J; Vo-Dinh T
    J Raman Spectrosc; 2013 Feb; 44(2):234-239. PubMed ID: 24839346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing.
    Shiohara A; Langer J; Polavarapu L; Liz-Marzán LM
    Nanoscale; 2014 Aug; 6(16):9817-23. PubMed ID: 25027634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo detection of SERS-encoded plasmonic nanostars in human skin grafts and live animal models.
    Register JK; Fales AM; Wang HN; Norton SJ; Cho EH; Boico A; Pradhan S; Kim J; Schroeder T; Wisniewski NA; Klitzman B; Vo-Dinh T
    Anal Bioanal Chem; 2015 Nov; 407(27):8215-24. PubMed ID: 26337748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microporous silica membranes promote plasmonic nanoparticle stability for SERS detection of uranyl.
    Phan HT; Geng S; Haes AJ
    Nanoscale; 2020 Dec; 12(46):23700-23708. PubMed ID: 33226397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Nanostar Reshaping Kinetics for Optimal Substrate Fabrication.
    Vang D; Strobbia P
    Appl Spectrosc; 2023 Mar; 77(3):270-280. PubMed ID: 36172843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast synthesis of gold nanostar SERS substrates based on ion-track etched membrane by one-step redox reaction.
    Qi X; Wang X; Dong Y; Xie J; Gui X; Bai J; Duan J; Liu J; Yao H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 272():120955. PubMed ID: 35124484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold Nanostars For Surface-Enhanced Raman Scattering: Synthesis, Characterization and Optimization.
    Khoury CG; Vo-Dinh T
    J Phys Chem C Nanomater Interfaces; 2008; 2008(112):18849-18859. PubMed ID: 23977403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-area periodic arrays of gold nanostars derived from HEPES-, DMF-, and ascorbic-acid-driven syntheses.
    Demille TB; Hughes RA; Dominique N; Olson JE; Rouvimov S; Camden JP; Neretina S
    Nanoscale; 2020 Aug; 12(31):16489-16500. PubMed ID: 32790810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bimetallic Gold Nanostars Having High Aspect Ratio Spikes for Sensitive Surface-Enhanced Raman Scattering Sensing.
    Atta S; Vo-Dinh T
    ACS Appl Nano Mater; 2022 Sep; 5(9):12562-12570. PubMed ID: 36185168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime.
    Indrasekara AS; Meyers S; Shubeita S; Feldman LC; Gustafsson T; Fabris L
    Nanoscale; 2014 Aug; 6(15):8891-9. PubMed ID: 24961293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uranyl Speciation on the Surface of Amidoximated Polyacrylonitrile Mats.
    Kravchuk DV; Blanes Diaz A; Carolan ME; Mpundu EA; Cwiertny DM; Forbes TZ
    Inorg Chem; 2020 Jun; 59(12):8134-8145. PubMed ID: 32437172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly sensitive SERS-based immunoassay with simultaneous utilization of self-assembled substrates of gold nanostars and aggregates of gold nanostars.
    Pei Y; Wang Z; Zong S; Cui Y
    J Mater Chem B; 2013 Aug; 1(32):3992-3998. PubMed ID: 32261225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Surface-Enhanced Raman Scattering Substrates for the Trace Detection of Ammonium Nitrate, Thiram, and Nile Blue.
    Rathod J; Byram C; Kanaka RK; Sree Satya Bharati M; Banerjee D; Akkanaboina M; Soma VR
    ACS Omega; 2022 May; 7(18):15969-15981. PubMed ID: 35571848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the Intracellular Bio-Nano Interface in Different Cell Lines with Gold Nanostars.
    Spedalieri C; Szekeres GP; Werner S; Guttmann P; Kneipp J
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33946192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications.
    Li M; Cushing SK; Zhang J; Lankford J; Aguilar ZP; Ma D; Wu N
    Nanotechnology; 2012 Mar; 23(11):115501. PubMed ID: 22383452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
    Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y
    Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.