These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33862229)

  • 1. Simulation-derived best practices for clustering clinical data.
    Coombes CE; Liu X; Abrams ZB; Coombes KR; Brock G
    J Biomed Inform; 2021 Jun; 118():103788. PubMed ID: 33862229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Head-to-head comparison of clustering methods for heterogeneous data: a simulation-driven benchmark.
    Preud'homme G; Duarte K; Dalleau K; Lacomblez C; Bresso E; Smaïl-Tabbone M; Couceiro M; Devignes MD; Kobayashi M; Huttin O; Ferreira JP; Zannad F; Rossignol P; Girerd N
    Sci Rep; 2021 Feb; 11(1):4202. PubMed ID: 33603019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential of clustering methods to define intersection test scenarios: Assessing real-life performance of AEB.
    Sander U; Lubbe N
    Accid Anal Prev; 2018 Apr; 113():1-11. PubMed ID: 29355748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SillyPutty: Improved clustering by optimizing the silhouette width.
    Bombina P; Tally D; Abrams ZB; Coombes KR
    PLoS One; 2024; 19(6):e0300358. PubMed ID: 38848330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of fMRI data using improved self-organizing mapping and spatio-temporal metric hierarchical clustering.
    Liao W; Chen H; Yang Q; Lei X
    IEEE Trans Med Imaging; 2008 Oct; 27(10):1472-83. PubMed ID: 18815099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and validation of consensus clustering-based framework for brain segmentation using resting fMRI.
    Ryali S; Chen T; Padmanabhan A; Cai W; Menon V
    J Neurosci Methods; 2015 Jan; 240():128-40. PubMed ID: 25450335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In simulated data and health records, latent class analysis was the optimum multimorbidity clustering algorithm.
    Nichols L; Taverner T; Crowe F; Richardson S; Yau C; Kiddle S; Kirk P; Barrett J; Nirantharakumar K; Griffin S; Edwards D; Marshall T
    J Clin Epidemiol; 2022 Dec; 152():164-175. PubMed ID: 36228971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of standard and semantically-augmented distance metrics for neurology patients.
    Hier DB; Kopel J; Brint SU; Wunsch DC; Olbricht GR; Azizi S; Allen B
    BMC Med Inform Decis Mak; 2020 Aug; 20(1):203. PubMed ID: 32843023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interval data clustering using self-organizing maps based on adaptive Mahalanobis distances.
    Hajjar C; Hamdan H
    Neural Netw; 2013 Oct; 46():124-32. PubMed ID: 23727709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of bioinformatics workflows using weighted versions of partitioning and hierarchical clustering algorithms.
    Lord E; Diallo AB; Makarenkov V
    BMC Bioinformatics; 2015 Mar; 16():68. PubMed ID: 25887434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sheep's coping style can be identified by unsupervised machine learning from unlabeled data.
    Çakmakçı C
    Behav Processes; 2022 Jan; 194():104559. PubMed ID: 34838901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of hierarchical clustering and neural network clustering: an analysis on precision dominance.
    Shahid N
    Sci Rep; 2023 Apr; 13(1):5661. PubMed ID: 37024621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metric for measuring the effectiveness of clustering of DNA microarray expression.
    Loganantharaj R; Cheepala S; Clifford J
    BMC Bioinformatics; 2006 Sep; 7 Suppl 2(Suppl 2):S5. PubMed ID: 17118148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-organizing subspace clustering for high-dimensional and multi-view data.
    Araújo AFR; Antonino VO; Ponce-Guevara KL
    Neural Netw; 2020 Oct; 130():253-268. PubMed ID: 32711348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research of the Distribution of Tongue Features of Diabetic Population Based on Unsupervised Learning Technology.
    Li J; Cui L; Tu L; Hu X; Wang S; Shi Y; Liu J; Zhou C; Li Y; Huang J; Xu J
    Evid Based Complement Alternat Med; 2022; 2022():7684714. PubMed ID: 35836832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zgli: A Pipeline for Clustering by Compression with Application to Patient Stratification in Spondyloarthritis.
    Azevedo D; Rodrigues AM; Canhão H; Carvalho AM; Souto A
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topology-based hierarchical clustering of self-organizing maps.
    Taşdemir K; Milenov P; Tapsall B
    IEEE Trans Neural Netw; 2011 Mar; 22(3):474-85. PubMed ID: 21356611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine-learned cluster identification in high-dimensional data.
    Ultsch A; Lötsch J
    J Biomed Inform; 2017 Feb; 66():95-104. PubMed ID: 28040499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modified Needleman-Wunsch algorithm for clinical pathway clustering.
    Aspland E; Harper PR; Gartner D; Webb P; Barrett-Lee P
    J Biomed Inform; 2021 Mar; 115():103668. PubMed ID: 33359110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A scalable and unbiased discordance metric with H.
    Dyjack N; Baker DN; Braverman V; Langmead B; Hicks SC
    Biostatistics; 2023 Dec; 25(1):188-202. PubMed ID: 36063544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.