These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 33862509)
1. Nanostructured micro particles as a low-cost and sustainable catalyst in the recycling of PET fiber waste by the glycolysis method. Guo Z; Adolfsson E; Tam PL Waste Manag; 2021 May; 126():559-566. PubMed ID: 33862509 [TBL] [Abstract][Full Text] [Related]
2. PET Glycolysis to BHET Efficiently Catalyzed by Stable and Recyclable Pd-Cu/γ-Al Zhou L; Qin E; Huang H; Wang Y; Li M Molecules; 2024 Sep; 29(18):. PubMed ID: 39339298 [TBL] [Abstract][Full Text] [Related]
3. Magnetic ionic liquid catalyst functionalized with antimony (III) bromide for effective glycolysis of polyethylene terephthalate. Mohammadi S; Enayati M Waste Manag; 2023 Oct; 170():308-316. PubMed ID: 37738758 [TBL] [Abstract][Full Text] [Related]
4. Sustainable PET Waste Recycling: Labels from PET Water Bottles Used as a Catalyst for the Chemical Recycling of the Same Bottles. Enayati M; Mohammadi S; Bouldo MG ACS Sustain Chem Eng; 2023 Nov; 11(46):16618-16626. PubMed ID: 38028403 [TBL] [Abstract][Full Text] [Related]
6. Dual-porous ZIF-8 heterogeneous catalysts with increased reaction sites for efficient PET glycolysis. Han N; Lee K; Lee J; Jo JH; An EJ; Lee G; Chi WS; Lee C Chemosphere; 2024 Sep; 364():143187. PubMed ID: 39187024 [TBL] [Abstract][Full Text] [Related]
7. Metal-oxide-doped silica nanoparticles for the catalytic glycolysis of polyethylene terephthalate. Imran M; Lee KG; Imtiaz Q; Kim BK; Han M; Cho BG; Kim DH J Nanosci Nanotechnol; 2011 Jan; 11(1):824-8. PubMed ID: 21446554 [TBL] [Abstract][Full Text] [Related]
8. Enhancing polyethylene terephthalate conversion through efficient microwave-assisted deep eutectic solvent-catalyzed glycolysis. Ha GS; Al Mamunur Rashid M; Ha JM; Yoo CJ; Jeon BH; Jeong K; Kim KH Chemosphere; 2024 Feb; 349():140781. PubMed ID: 38006913 [TBL] [Abstract][Full Text] [Related]
9. Chemical Recycling of PET Using Catalysts from Layered Double Hydroxides: Effect of Synthesis Method and Mg-Fe Biocompatible Metals. Arcanjo AP; Liborio DO; Arias S; Carvalho FR; Silva JP; Ribeiro BD; Dias ML; Castro AM; Fréty R; Barbosa CMBM; Pacheco JGA Polymers (Basel); 2023 Aug; 15(15):. PubMed ID: 37571167 [TBL] [Abstract][Full Text] [Related]
11. One-step sonochemical synthesis of a graphene oxide-manganese oxide nanocomposite for catalytic glycolysis of poly(ethylene terephthalate). Park G; Bartolome L; Lee KG; Lee SJ; Kim DH; Park TJ Nanoscale; 2012 Jul; 4(13):3879-85. PubMed ID: 22592889 [TBL] [Abstract][Full Text] [Related]
12. Integrating experimental and computational approaches for deep eutectic solvent-catalyzed glycolysis of post-consumer polyethylene terephthalate. Ha GS; Rashid MAM; Oh DH; Ha JM; Yoo CJ; Jeon BH; Koo B; Jeong K; Kim KH Waste Manag; 2024 Feb; 174():411-419. PubMed ID: 38103351 [TBL] [Abstract][Full Text] [Related]
13. Two-Step Chemo-Microbial Degradation of Post-Consumer Polyethylene Terephthalate (PET) Plastic Enabled by a Biomass-Waste Catalyst. Shingwekar D; Laster H; Kemp H; Mellies JL Bioengineering (Basel); 2023 Oct; 10(11):. PubMed ID: 38002377 [TBL] [Abstract][Full Text] [Related]
18. Optimizing PET Glycolysis with an Oyster Shell-Derived Catalyst Using Response Surface Methodology. Kim Y; Kim M; Hwang J; Im E; Moon GD Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215568 [TBL] [Abstract][Full Text] [Related]
19. Catalytic Amounts of an Antibacterial Monomer Enable the Upcycling of Poly(Ethylene Terephthalate) Waste. Zhang H; Fang T; Yao X; Li X; Zhu W Adv Mater; 2023 May; 35(20):e2210758. PubMed ID: 36809549 [TBL] [Abstract][Full Text] [Related]
20. Recycling of waste PET into useful textile auxiliaries. Shukla SR; Harad AM; Jawale LS Waste Manag; 2008; 28(1):51-6. PubMed ID: 17207616 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]