BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33862639)

  • 1. Estimation of Metabolic Energy Expenditure during Short Walking Bouts.
    Blokland IJ; de Koning JJ; van Kan T; van Bennekom CAM; van Dieen JH; Houdijk H
    Int J Sports Med; 2021 Nov; 42(12):1098-1104. PubMed ID: 33862639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Test-retest reliability and minimum detectable change using the K4b2: oxygen consumption, gait efficiency, and heart rate for healthy adults during submaximal walking.
    Darter BJ; Rodriguez KM; Wilken JM
    Res Q Exerc Sport; 2013 Jun; 84(2):223-31. PubMed ID: 23930548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the Cosmed K4b(2) portable metabolic system in measuring steady-state walking energy expenditure.
    Schrack JA; Simonsick EM; Ferrucci L
    PLoS One; 2010 Feb; 5(2):e9292. PubMed ID: 20174583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a wearable body monitoring device during treadmill walking and jogging in patients with fibromyalgia syndrome.
    Munguía-Izquierdo D; Santalla A; Legaz-Arrese A
    Arch Phys Med Rehabil; 2012 Jan; 93(1):115-22. PubMed ID: 22200390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Test-Retest Reliability of Indirect Calorimetry Measures of Energy Expenditure During Overground Walking in Older Adults With Mobility Limitations.
    Wert DM; VanSwearingen JM; Perera S; Brach JS
    J Aging Phys Act; 2015 Jul; 23(3):346-51. PubMed ID: 25007982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Day-to-day variation in oxygen consumption and energy expenditure during submaximal treadmill walking in female adolescents.
    Wergel-Kolmert U; Wohlfart B
    Clin Physiol; 1999 Mar; 19(2):161-8. PubMed ID: 10200898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using a Contemporary Portable Metabolic Gas Exchange System for Assessing Energy Expenditure: A Validity and Reliability Study.
    McClung HL; Tharion WJ; Walker LA; Rome MN; Hoyt RW; Looney DP
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic equivalent: one size does not fit all.
    Byrne NM; Hills AP; Hunter GR; Weinsier RL; Schutz Y
    J Appl Physiol (1985); 2005 Sep; 99(3):1112-9. PubMed ID: 15831804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of accuracy and reliability of indirect calorimetry for the measurement of resting energy expenditure in healthy dogs.
    O'Toole E; McDonell WN; Wilson BA; Mathews KA; Miller CW; Sears WC
    Am J Vet Res; 2001 Nov; 62(11):1761-7. PubMed ID: 11703021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reliability and validity of the physiological cost index in healthy subjects while walking on 2 different tracks.
    Graham RC; Smith NM; White CM
    Arch Phys Med Rehabil; 2005 Oct; 86(10):2041-6. PubMed ID: 16213251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining energy expenditure during some household and garden tasks.
    Gunn SM; Brooks AG; Withers RT; Gore CJ; Owen N; Booth ML; Bauman AE
    Med Sci Sports Exerc; 2002 May; 34(5):895-902. PubMed ID: 11984312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating oxygen uptake and energy expenditure during treadmill walking by neural network analysis of easy-to-obtain inputs.
    Beltrame T; Amelard R; Villar R; Shafiee MJ; Wong A; Hughson RL
    J Appl Physiol (1985); 2016 Nov; 121(5):1226-1233. PubMed ID: 27687561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The energy cost of horizontal walking and running in adolescents.
    Walker JL; Murray TD; Jackson AS; Morrow JR; Michaud TJ
    Med Sci Sports Exerc; 1999 Feb; 31(2):311-22. PubMed ID: 10063822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pocket-sized metabolic analyzer for assessment of resting energy expenditure.
    Zhao D; Xian X; Terrera M; Krishnan R; Miller D; Bridgeman D; Tao K; Zhang L; Tsow F; Forzani ES; Tao N
    Clin Nutr; 2014 Apr; 33(2):341-7. PubMed ID: 23827182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Between-day variability of net and gross oxygen uptake during graded treadmill walking: effects of different walking intensities on the reliability of locomotion economy.
    Vilhena de Mendonça G; Pereira FD
    Appl Physiol Nutr Metab; 2008 Dec; 33(6):1199-206. PubMed ID: 19088778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of energy expenditure in children using the RT3 accelerometer.
    Kavouras SA; Sarras SE; Tsekouras YE; Sidossis LS
    J Sports Sci; 2008 Jul; 26(9):959-66. PubMed ID: 18569562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliability of the VmaxST portable metabolic measurement system.
    Blessinger J; Sawyer B; Davis C; Irving BA; Weltman A; Gaesser G
    Int J Sports Med; 2009 Jan; 30(1):22-6. PubMed ID: 18651368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating Oxygen Uptake During Nonsteady-State Activities and Transitions Using Wearable Sensors.
    Altini M; Penders J; Amft O
    IEEE J Biomed Health Inform; 2016 Mar; 20(2):469-75. PubMed ID: 25594986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of energy expenditure during walking in adults with down syndrome.
    Agiovlasitis S; Mendonca GV; McCubbin JA; Fernhall B
    J Appl Res Intellect Disabil; 2018 Jan; 31 Suppl 1():151-156. PubMed ID: 28815878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy cost of treadmill walking.
    Bunc V; Dlouhá R
    J Sports Med Phys Fitness; 1997 Jun; 37(2):103-9. PubMed ID: 9239987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.