These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33862679)

  • 1. Phase synchronization in the two-dimensional Kuramoto model: Vortices and duality.
    Sarkar M; Gupte N
    Phys Rev E; 2021 Mar; 103(3-1):032204. PubMed ID: 33862679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vortices and the entrainment transition in the two-dimensional Kuramoto model.
    Lee TE; Tam H; Refael G; Rogers JL; Cross MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036202. PubMed ID: 21230156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-locking of magnetic vortices mediated by antivortices.
    Ruotolo A; Cros V; Georges B; Dussaux A; Grollier J; Deranlot C; Guillemet R; Bouzehouane K; Fusil S; Fert A
    Nat Nanotechnol; 2009 Aug; 4(8):528-32. PubMed ID: 19662017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Describing synchronization and topological excitations in arrays of magnetic spin torque oscillators through the Kuramoto model.
    Flovik V; Macià F; Wahlström E
    Sci Rep; 2016 Sep; 6():32528. PubMed ID: 27580938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronization transition in the two-dimensional Kuramoto model with dichotomous noise.
    Sarkar M
    Chaos; 2021 Aug; 31(8):083102. PubMed ID: 34470227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronous harmony in an ensemble of Hamiltonian mean-field oscillators and inertial Kuramoto oscillators.
    Ha SY; Lee J; Li Z
    Chaos; 2018 Nov; 28(11):113112. PubMed ID: 30501218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microscopic correlations in the finite-size Kuramoto model of coupled oscillators.
    Peter F; Gong CC; Pikovsky A
    Phys Rev E; 2019 Sep; 100(3-1):032210. PubMed ID: 31639966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal global synchronization of partially forced Kuramoto oscillators.
    Climaco JS; Saa A
    Chaos; 2019 Jul; 29(7):073115. PubMed ID: 31370401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kuramoto model with additional nearest-neighbor interactions: Existence of a nonequilibrium tricritical point.
    Sarkar M; Gupta S
    Phys Rev E; 2020 Sep; 102(3-1):032202. PubMed ID: 33075901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defect Superdiffusion and Unbinding in a 2D XY Model of Self-Driven Rotors.
    Rouzaire Y; Levis D
    Phys Rev Lett; 2021 Aug; 127(8):088004. PubMed ID: 34477446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topological data analysis of the synchronization of a network of Rössler chaotic electronic oscillators.
    Zabaleta-Ortega A; Masoller C; Guzmán-Vargas L
    Chaos; 2023 Nov; 33(11):. PubMed ID: 37921586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Explosive synchronization in interlayer phase-shifted Kuramoto oscillators on multiplex networks.
    Kumar A; Jalan S
    Chaos; 2021 Apr; 31(4):041103. PubMed ID: 34251235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-delayed Kuramoto model in the Watts-Strogatz small-world networks.
    Ameli S; Karimian M; Shahbazi F
    Chaos; 2021 Nov; 31(11):113125. PubMed ID: 34881592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency spirals.
    Ottino-Löffler B; Strogatz SH
    Chaos; 2016 Sep; 26(9):094804. PubMed ID: 27781469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronization in a system of Kuramoto oscillators with distributed Gaussian noise.
    Campa A; Gupta S
    Phys Rev E; 2023 Dec; 108(6-1):064124. PubMed ID: 38243549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reentrant synchronization and pattern formation in pacemaker-entrained Kuramoto oscillators.
    Radicchi F; Meyer-Ortmanns H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026203. PubMed ID: 17025521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators.
    Hong H; Strogatz SH
    Phys Rev Lett; 2011 Feb; 106(5):054102. PubMed ID: 21405399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of desynchronization in the finite-dimensional Kuramoto model.
    Maistrenko Y; Popovych O; Burylko O; Tass PA
    Phys Rev Lett; 2004 Aug; 93(8):084102. PubMed ID: 15447191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal synchronization of Kuramoto oscillators: A dimensional reduction approach.
    Pinto RS; Saa A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062801. PubMed ID: 26764738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators.
    Yue W; Smith LD; Gottwald GA
    Phys Rev E; 2020 Jun; 101(6-1):062213. PubMed ID: 32688503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.