These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33862679)

  • 21. Monte Carlo studies of the XY model on two-dimensional curved surfaces.
    Selinger RL; Konya A; Travesset A; Selinger JV
    J Phys Chem B; 2011 Dec; 115(48):13989-93. PubMed ID: 21970652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploration of field-like torque and field-angle tunability in coupled spin-torque nano oscillators for synchronization.
    Arun R; Gopal R; Chandrasekar VK; Lakshmanan M
    Chaos; 2024 Jan; 34(1):. PubMed ID: 38198682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kuramoto dynamics in Hamiltonian systems.
    Witthaut D; Timme M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032917. PubMed ID: 25314514
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exact results for the Kuramoto model with a bimodal frequency distribution.
    Martens EA; Barreto E; Strogatz SH; Ott E; So P; Antonsen TM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026204. PubMed ID: 19391817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transition to complete synchronization in phase-coupled oscillators with nearest neighbor coupling.
    El-Nashar HF; Muruganandam P; Ferreira FF; Cerdeira HA
    Chaos; 2009 Mar; 19(1):013103. PubMed ID: 19334967
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of field heterogeneity on the dynamics of the forced Kuramoto model.
    Yoon S; Wright EAP; Mendes JFF; Goltsev AV
    Phys Rev E; 2021 Aug; 104(2-1):024313. PubMed ID: 34525638
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perturbation analysis of the Kuramoto phase-diffusion equation subject to quenched frequency disorder.
    Tönjes R; Blasius B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016112. PubMed ID: 19257112
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Explosive synchronization coexists with classical synchronization in the Kuramoto model.
    Danziger MM; Moskalenko OI; Kurkin SA; Zhang X; Havlin S; Boccaletti S
    Chaos; 2016 Jun; 26(6):065307. PubMed ID: 27369869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental study of synchronization of coupled electrical self-oscillators and comparison to the Sakaguchi-Kuramoto model.
    English LQ; Zeng Z; Mertens D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052912. PubMed ID: 26651767
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model.
    Omel'chenko OE; Wolfrum M
    Phys Rev Lett; 2012 Oct; 109(16):164101. PubMed ID: 23215080
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fully synchronous solutions and the synchronization phase transition for the finite-N Kuramoto model.
    Bronski JC; DeVille L; Park MJ
    Chaos; 2012 Sep; 22(3):033133. PubMed ID: 23020472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synchronization in the Kuramoto model in presence of stochastic resetting.
    Sarkar M; Gupta S
    Chaos; 2022 Jul; 32(7):073109. PubMed ID: 35907730
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Topological thermalization via vortex formation in ultrafast quenches.
    Tello-Fraile M; Cano A; Donaire M
    Phys Rev E; 2020 May; 101(5-1):052113. PubMed ID: 32575337
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synchronization in a chain of nearest neighbors coupled oscillators with fixed ends.
    El-Nashar HF; Zhang Y; Cerdeira HA; Ibiyinka A F
    Chaos; 2003 Dec; 13(4):1216-25. PubMed ID: 14604412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multistable states in a system of coupled phase oscillators with inertia.
    Yuan D; Lin F; Wang L; Liu D; Yang J; Xiao Y
    Sci Rep; 2017 Feb; 7():42178. PubMed ID: 28176829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Entrainment of coupled oscillators on regular networks by pacemakers.
    Radicchi F; Meyer-Ortmanns H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036218. PubMed ID: 16605642
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Local synchronization in complex networks of coupled oscillators.
    Stout J; Whiteway M; Ott E; Girvan M; Antonsen TM
    Chaos; 2011 Jun; 21(2):025109. PubMed ID: 21721787
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Emulating the local Kuramoto model with an injection-locked photonic crystal laser array.
    Takemura N; Takata K; Takiguchi M; Notomi M
    Sci Rep; 2021 Apr; 11(1):8587. PubMed ID: 33883569
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recurrent synchronization of coupled oscillators with spontaneous phase reformation.
    Jeon JH; Kim P
    Chaos; 2018 Oct; 28(10):103113. PubMed ID: 30384644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bifurcations in the Kuramoto model on graphs.
    Chiba H; Medvedev GS; Mizuhara MS
    Chaos; 2018 Jul; 28(7):073109. PubMed ID: 30070519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.