These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33862707)

  • 1. Optimal surface-tension isotropy in the Rothman-Keller color-gradient lattice Boltzmann method for multiphase flow.
    Mora P; Morra G; Yuen DA
    Phys Rev E; 2021 Mar; 103(3-1):033302. PubMed ID: 33862707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interface tracking characteristics of color-gradient lattice Boltzmann model for immiscible fluids.
    Subhedar A; Reiter A; Selzer M; Varnik F; Nestler B
    Phys Rev E; 2020 Jan; 101(1-1):013313. PubMed ID: 32069649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis.
    Ba Y; Liu H; Sun J; Zheng R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043306. PubMed ID: 24229303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations.
    Liu H; Valocchi AJ; Kang Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046309. PubMed ID: 22680576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Color-gradient-based phase-field equation for multiphase flow.
    Haghani R; Erfani H; McClure JE; Flekkøy EG; Berg CF
    Phys Rev E; 2024 Mar; 109(3-2):035301. PubMed ID: 38632731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media.
    Leclaire S; Parmigiani A; Malaspinas O; Chopard B; Latt J
    Phys Rev E; 2017 Mar; 95(3-1):033306. PubMed ID: 28415302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppressing Viscous Fingering in Porous Media with Wetting Gradient.
    Wang X; Yin C; Wang J; Zheng K; Zhang Z; Tian Z; Xiong Y
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lattice Boltzmann simulation of immiscible three-phase flows with contact-line dynamics.
    Yu Y; Liang D; Liu H
    Phys Rev E; 2019 Jan; 99(1-1):013308. PubMed ID: 30780284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference.
    Liu H; Ju Y; Wang N; Xi G; Zhang Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033306. PubMed ID: 26465585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Curvature estimation from a volume-of-fluid indicator function for the simulation of surface tension and wetting with a free-surface lattice Boltzmann method.
    Bogner S; Rüde U; Harting J
    Phys Rev E; 2016 Apr; 93():043302. PubMed ID: 27176423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of immiscible two-phase flow properties in a two-dimensional Berea sandstone using the pore-scale lattice Boltzmann simulation.
    Xu M; Liu H
    Eur Phys J E Soft Matter; 2018 Oct; 41(10):124. PubMed ID: 30324324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A self-consistent field study of a hydrocarbon droplet at the air-water interface.
    Hilz E; Leermakers FA; Vermeer AW
    Phys Chem Chem Phys; 2012 Apr; 14(14):4917-26. PubMed ID: 22395192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicomponent interparticle-potential lattice Boltzmann model for fluids with large viscosity ratios.
    Porter ML; Coon ET; Kang Q; Moulton JD; Carey JW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036701. PubMed ID: 23031047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correction to the interfacial tension by curvature radius: differences between droplets and bubbles.
    Castellanos AJ; Toro-Mendoza J; Garcia-Sucre M
    J Phys Chem B; 2009 Apr; 113(17):5891-6. PubMed ID: 19338313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lattice Boltzmann model for three-phase viscoelastic fluid flow.
    Xie C; Lei W; Wang M
    Phys Rev E; 2018 Feb; 97(2-1):023312. PubMed ID: 29548162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetting and Spreading Behavior of Axisymmetric Compound Droplets on Curved Solid Walls Using Conservative Phase Field Lattice Boltzmann Method.
    Wang Y; Huang JJ
    Entropy (Basel); 2024 Feb; 26(2):. PubMed ID: 38392427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth morphology and symmetry selection of interfacial instabilities in anisotropic environments.
    Zhang Q; Amooie A; Bazant MZ; Bischofberger I
    Soft Matter; 2021 Feb; 17(5):1202-1209. PubMed ID: 33427833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models.
    Shan X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):047701. PubMed ID: 16711963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of droplet formation and coalescence using lattice Boltzmann-based single-phase model.
    Xing XQ; Butler DL; Ng SH; Wang Z; Danyluk S; Yang C
    J Colloid Interface Sci; 2007 Jul; 311(2):609-18. PubMed ID: 17434175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Director alignment at the nematic-isotropic interface: elastic anisotropy and active anchoring.
    Coelho RCV; Araújo NAM; Telo da Gama MM
    Philos Trans A Math Phys Eng Sci; 2021 Oct; 379(2208):20200394. PubMed ID: 34455836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.