These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 33862793)
1. Influence of distinct kinds of temporal disorder in discontinuous phase transitions. Encinas JM; Fiore CE Phys Rev E; 2021 Mar; 103(3-1):032124. PubMed ID: 33862793 [TBL] [Abstract][Full Text] [Related]
2. Entropy production as a tool for characterizing nonequilibrium phase transitions. Noa CEF; Harunari PE; de Oliveira MJ; Fiore CE Phys Rev E; 2019 Jul; 100(1-1):012104. PubMed ID: 31499824 [TBL] [Abstract][Full Text] [Related]
3. Fundamental ingredients for discontinuous phase transitions in the inertial majority vote model. Encinas JM; Harunari PE; de Oliveira MM; Fiore CE Sci Rep; 2018 Jun; 8(1):9338. PubMed ID: 29921974 [TBL] [Abstract][Full Text] [Related]
4. Temporal disorder does not forbid discontinuous absorbing phase transitions in low-dimensional systems. de Oliveira MM; Fiore CE Phys Rev E; 2016 Nov; 94(5-1):052138. PubMed ID: 27967145 [TBL] [Abstract][Full Text] [Related]
5. Partial inertia induces additional phase transition in the majority vote model. Harunari PE; de Oliveira MM; Fiore CE Phys Rev E; 2017 Oct; 96(4-1):042305. PubMed ID: 29347484 [TBL] [Abstract][Full Text] [Related]
6. Finite-size scaling for discontinuous nonequilibrium phase transitions. de Oliveira MM; da Luz MGE; Fiore CE Phys Rev E; 2018 Jun; 97(6-1):060101. PubMed ID: 30011570 [TBL] [Abstract][Full Text] [Related]
7. Continuous and discontinuous absorbing-state phase transitions on Voronoi-Delaunay random lattices. de Oliveira MM; Alves SG; Ferreira SC Phys Rev E; 2016 Jan; 93(1):012110. PubMed ID: 26871027 [TBL] [Abstract][Full Text] [Related]
8. Generic finite size scaling for discontinuous nonequilibrium phase transitions into absorbing states. de Oliveira MM; da Luz MG; Fiore CE Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062126. PubMed ID: 26764651 [TBL] [Abstract][Full Text] [Related]
9. Quenched disorder forbids discontinuous transitions in nonequilibrium low-dimensional systems. Villa Martín P; Bonachela JA; Muñoz MA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012145. PubMed ID: 24580210 [TBL] [Abstract][Full Text] [Related]
10. Nonequilibrium Thermodynamics of the Majority Vote Model. Hawthorne F; Harunari PE; de Oliveira MJ; Fiore CE Entropy (Basel); 2023 Aug; 25(8):. PubMed ID: 37628260 [TBL] [Abstract][Full Text] [Related]
11. Phase transitions in a multistate majority-vote model on complex networks. Chen H; Li G Phys Rev E; 2018 Jun; 97(6-1):062304. PubMed ID: 30011539 [TBL] [Abstract][Full Text] [Related]
12. Discontinuous transitions can survive to quenched disorder in a two-dimensional nonequilibrium system. Neto MA; Brigatti E Phys Rev E; 2020 Feb; 101(2-1):022112. PubMed ID: 32168664 [TBL] [Abstract][Full Text] [Related]
13. Effect of diffusion in one-dimensional discontinuous absorbing phase transitions. Fiore CE; Landi GT Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032123. PubMed ID: 25314411 [TBL] [Abstract][Full Text] [Related]
14. Replica symmetry broken states of some glass models. Yeo J; Moore MA Phys Rev E; 2023 Nov; 108(5-1):054134. PubMed ID: 38115428 [TBL] [Abstract][Full Text] [Related]
15. Discontinuous nonequilibrium phase transitions in a nonlinearly pulse-coupled excitable lattice model. Assis VR; Copelli M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061105. PubMed ID: 20365116 [TBL] [Abstract][Full Text] [Related]
16. Random field disorder at an absorbing state transition in one and two dimensions. Barghathi H; Vojta T Phys Rev E; 2016 Feb; 93(2):022120. PubMed ID: 26986301 [TBL] [Abstract][Full Text] [Related]
17. Robustness of first-order phase transitions in one-dimensional long-range contact processes. Fiore CE; de Oliveira MJ Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042101. PubMed ID: 23679367 [TBL] [Abstract][Full Text] [Related]
18. Tricritical behavior of nonequilibrium Ising spins in fluctuating environments. Park JM; Noh JD Phys Rev E; 2017 Apr; 95(4-1):042106. PubMed ID: 28505858 [TBL] [Abstract][Full Text] [Related]
19. Comparing the influence of distinct kinds of temporal disorder in a low-dimensional absorbing transition model. Solano CM; de Oliveira MM; Fiore CE Phys Rev E; 2016 Oct; 94(4-1):042123. PubMed ID: 27841620 [TBL] [Abstract][Full Text] [Related]
20. Absence of first-order transition and tricritical point in the dynamic phase diagram of a spatially extended bistable system in an oscillating field. Korniss G; Rikvold PA; Novotny MA Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056127. PubMed ID: 12513576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]