These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 33862832)
21. Role of Multiple Soliton Interactions in the Generation of Rogue Waves: The Modified Korteweg-de Vries Framework. Slunyaev AV; Pelinovsky EN Phys Rev Lett; 2016 Nov; 117(21):214501. PubMed ID: 27911520 [TBL] [Abstract][Full Text] [Related]
22. Breather solutions of a fourth-order nonlinear Schrödinger equation in the degenerate, soliton, and rogue wave limits. Chowdury A; Krolikowski W; Akhmediev N Phys Rev E; 2017 Oct; 96(4-1):042209. PubMed ID: 29347542 [TBL] [Abstract][Full Text] [Related]
27. Peregrine rogue waves induced by the interaction between a continuous wave and a soliton. Yang G; Li L; Jia S Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046608. PubMed ID: 22680599 [TBL] [Abstract][Full Text] [Related]
28. Second-order rogue wave breathers in the nonlinear Schrödinger equation with quadratic potential modulated by a spatially-varying diffraction coefficient. Zhong WP; Belić M; Zhang Y Opt Express; 2015 Feb; 23(3):3708-16. PubMed ID: 25836223 [TBL] [Abstract][Full Text] [Related]
30. Dynamics study of integrable turbulence with fourth-order nonlinear Schrödinger equation. Tang Y; Wang Y; Wu D; Zhang Q; Zhang Y Chaos; 2022 Sep; 32(9):093134. PubMed ID: 36182380 [TBL] [Abstract][Full Text] [Related]
31. Breather turbulence versus soliton turbulence: Rogue waves, probability density functions, and spectral features. Akhmediev N; Soto-Crespo JM; Devine N Phys Rev E; 2016 Aug; 94(2-1):022212. PubMed ID: 27627303 [TBL] [Abstract][Full Text] [Related]
32. Effect of local Peregrine soliton emergence on statistics of random waves in the one-dimensional focusing nonlinear Schrödinger equation. Tikan A Phys Rev E; 2020 Jan; 101(1-1):012209. PubMed ID: 32069634 [TBL] [Abstract][Full Text] [Related]
34. Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation. Wang LH; Porsezian K; He JS Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053202. PubMed ID: 23767650 [TBL] [Abstract][Full Text] [Related]
35. Rogue waves and rational solutions of the nonlinear Schrödinger equation. Akhmediev N; Ankiewicz A; Soto-Crespo JM Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026601. PubMed ID: 19792266 [TBL] [Abstract][Full Text] [Related]
36. Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers. Wang L; Zhu YJ; Qi FH; Li M; Guo R Chaos; 2015 Jun; 25(6):063111. PubMed ID: 26117105 [TBL] [Abstract][Full Text] [Related]
37. Rogue waves on the background of periodic standing waves in the derivative nonlinear Schrödinger equation. Chen J; Pelinovsky DE Phys Rev E; 2021 Jun; 103(6-1):062206. PubMed ID: 34271656 [TBL] [Abstract][Full Text] [Related]
38. Optical Random Riemann Waves in Integrable Turbulence. Randoux S; Gustave F; Suret P; El G Phys Rev Lett; 2017 Jun; 118(23):233901. PubMed ID: 28644639 [TBL] [Abstract][Full Text] [Related]
39. Ocean rogue waves and their phase space dynamics in the limit of a linear interference model. Birkholz S; Brée C; Veselić I; Demircan A; Steinmeyer G Sci Rep; 2016 Oct; 6():35207. PubMed ID: 27731411 [TBL] [Abstract][Full Text] [Related]
40. Exciting extreme events in the damped and AC-driven NLS equation through plane-wave initial conditions. Diamantidis S; Horikis TP; Karachalios NI Chaos; 2021 May; 31(5):053103. PubMed ID: 34240954 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]