These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33862872)

  • 21. The growth and gas exchange response of soil-planted Norway spruce [Picea abies (L.) Karst.] and red oak (Quercus rubra L.) exposed to elevated CO
    Dixon M; Thiec DL; Garrec JP
    New Phytol; 1995 Feb; 129(2):265-273. PubMed ID: 33874547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of soil water and nitrogen availability on photosynthesis and water use efficiency of Robinia pseudoacacia seedlings.
    Liu X; Fan Y; Long J; Wei R; Kjelgren R; Gong C; Zhao J
    J Environ Sci (China); 2013 Mar; 25(3):585-95. PubMed ID: 23923433
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Growth overcompensation against O3 exposure in two Japanese oak species, Quercus mongolica var. crispula and Quercus serrata, grown under elevated CO2.
    Kitao M; Komatsu M; Yazaki K; Kitaoka S; Tobita H
    Environ Pollut; 2015 Nov; 206():133-41. PubMed ID: 26162332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO(2)] and temperature conditions?
    Hall M; Medlyn BE; Abramowitz G; Franklin O; Räntfors M; Linder S; Wallin G
    Tree Physiol; 2013 Nov; 33(11):1156-76. PubMed ID: 23525155
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Effects of elevated CO
    Zhang K; Wang RY; Li QZ; Wang HL; Zhao H; Yang FL; Zhao FN; Qi Y
    Ying Yong Sheng Tai Xue Bao; 2018 Sep; 29(9):2959-2969. PubMed ID: 30411572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leaf physiology and biomass allocation of backcross hybrid American chestnut (Castanea dentata) seedlings in response to light and water availability.
    Brown CE; Mickelbart MV; Jacobs DF
    Tree Physiol; 2014 Dec; 34(12):1362-75. PubMed ID: 25428828
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of light availability on leaf gas exchange and expansion in lychee (Litchi chinensis).
    Hieke S; Menzel CM; Lüdders P
    Tree Physiol; 2002 Dec; 22(17):1249-56. PubMed ID: 12464578
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effects of soil water regimes on the growth of Quercus mongolica seedlings in Changbai Mountains].
    Wang M; Li Q; Hao Z; Dong B
    Ying Yong Sheng Tai Xue Bao; 2004 Oct; 15(10):1765-70. PubMed ID: 15624805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rising CO
    Faralli M; Grove IG; Hare MC; Kettlewell PS; Fiorani F
    Plant Cell Environ; 2017 Feb; 40(2):317-325. PubMed ID: 27859348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon translocation patterns associated with new root proliferation during episodic growth of transplanted Quercus rubra seedlings.
    Sloan JL; Jacobs DF
    Tree Physiol; 2008 Jul; 28(7):1121-6. PubMed ID: 18450576
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of overstory density on ecophysiology of red oak (Quercus rubra) and sugar maple (Acer saccharum) seedlings in central Ontario shelterwoods.
    Parker WC; Dey DC
    Tree Physiol; 2008 May; 28(5):797-804. PubMed ID: 18316311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees.
    Cavender-Bares J; Bazzaz FA
    Oecologia; 2000 Jul; 124(1):8-18. PubMed ID: 28308415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temperature and ontogeny mediate growth response to elevated CO
    Tjoelker MG; Oleksyn J; Reich PB
    New Phytol; 1998 Oct; 140(2):197-210. PubMed ID: 33862848
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of nutrient limitation and elevated CO2 concentration on carbon assimilation of a tropical tree seedling (Cedrela odorata).
    Carswell FE; Grace J; Lucas ME; Jarvis PG
    Tree Physiol; 2000 Aug; 20(14):977-86. PubMed ID: 11303573
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon dioxide assimilation and growth of red spruce (Picea rubens Sarg.) seedlings in response to ozone, precipitation chemistry, and soil type.
    Taylor GE; Norby RJ; McLaughlin SB; Johnson AH; Turner RS
    Oecologia; 1986 Sep; 70(2):163-171. PubMed ID: 28311653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth and transpiration of Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) seedlings in response to soil water content.
    Nagakura J; Shigenaga H; Akama A; Takahashi M
    Tree Physiol; 2004 Nov; 24(11):1203-8. PubMed ID: 15339729
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photosynthetic response of Cannabis sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions.
    Chandra S; Lata H; Khan IA; Elsohly MA
    Physiol Mol Biol Plants; 2008 Oct; 14(4):299-306. PubMed ID: 23572895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of elevated [CO2] and low soil moisture on the physiological responses of Mountain Maple (Acer spicatum L.) seedlings to light.
    Danyagri G; Dang QL
    PLoS One; 2013; 8(10):e76586. PubMed ID: 24146894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Responses of gas exchange to reversible changes in whole-plant transpiration rate in two conifer species.
    Warren CR; Livingston NJ; Turpin DH
    Tree Physiol; 2003 Aug; 23(12):793-803. PubMed ID: 12865245
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morpho-Anatomical Traits and Soluble Sugar Concentration Largely Explain the Responses of Three Deciduous Tree Species to Progressive Water Stress.
    Hernandez JO; An JY; Combalicer MS; Chun JP; Oh SK; Park BB
    Front Plant Sci; 2021; 12():738301. PubMed ID: 34950160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.