These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 33862878)

  • 1. Ontogeny affects response of northern red oak seedlings to elevated CO
    Tomlinson PT; Anderson PD
    New Phytol; 1998 Nov; 140(3):493-504. PubMed ID: 33862878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ontogeny affects response of northern red oak seedlings to elevated CO
    Anderson PD; Tomlinson PT
    New Phytol; 1998 Nov; 140(3):477-491. PubMed ID: 33862872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon translocation patterns associated with new root proliferation during episodic growth of transplanted Quercus rubra seedlings.
    Sloan JL; Jacobs DF
    Tree Physiol; 2008 Jul; 28(7):1121-6. PubMed ID: 18450576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactive effects of elevated CO2 concentration and nitrogen supply on partitioning of newly fixed 13C and 15N between shoot and roots of pedunculate oak seedlings (Quercus robur).
    Maillard P; Guehl JM; Muller JF; Gross P
    Tree Physiol; 2001 Feb; 21(2-3):163-72. PubMed ID: 11303647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced translocation of current photosynthate precedes changes in gas exchange for Quercus rubra seedlings under flooding stress.
    Sloan JL; Islam MA; Jacobs DF
    Tree Physiol; 2016 Jan; 36(1):54-62. PubMed ID: 26655380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of heat waves, elevated [CO2 ] and low soil water availability on northern red oak (Quercus rubra L.) seedlings.
    Bauweraerts I; Wertin TM; Ameye M; McGuire MA; Teskey RO; Steppe K
    Glob Chang Biol; 2013 Feb; 19(2):517-28. PubMed ID: 23504789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas exchange, biomass, whole-plant water-use efficiency and water uptake of peach (Prunus persica) seedlings in response to elevated carbon dioxide concentration and water availability.
    Centritto M; Lucas ME; Jarvis PG
    Tree Physiol; 2002 Jul; 22(10):699-706. PubMed ID: 12091151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of CO
    Tolley LC; Strain BR
    Oecologia; 1985 Jan; 65(2):166-172. PubMed ID: 28310662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rising CO
    Faralli M; Grove IG; Hare MC; Kettlewell PS; Fiorani F
    Plant Cell Environ; 2017 Feb; 40(2):317-325. PubMed ID: 27859348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated temperature and CO2 cause differential growth stimulation and drought survival responses in eucalypt species from contrasting habitats.
    Apgaua DMG; Tng DYP; Forbes SJ; Ishida YF; Vogado NO; Cernusak LA; Laurance SGW
    Tree Physiol; 2019 Dec; 39(11):1806-1820. PubMed ID: 31768554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competitive interactions between established grasses and woody plant seedlings under elevated CO₂ levels are mediated by soil water availability.
    Manea A; Leishman MR
    Oecologia; 2015 Feb; 177(2):499-506. PubMed ID: 25388876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaf ecophysiological and metabolic response in Quercus pyrenaica Willd seedlings to moderate drought under enriched CO
    Aranda I; Cadahía E; Fernández de Simón B
    J Plant Physiol; 2020 Jan; 244():153083. PubMed ID: 31812028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Elevated [CO2] on Growth and Photosynthesis of Two Eucalyptus Species Exposed to High Temperatures and Water Deficits.
    Roden JS; Ball MC
    Plant Physiol; 1996 Jul; 111(3):909-919. PubMed ID: 12226337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elevated CO
    Farnsworth EJ; Ellison AM; Gong WK
    Oecologia; 1996 Dec; 108(4):599-609. PubMed ID: 28307791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compensatory responses of CO
    Callaway RM; DeLucia EH; Thomas EM; Schlesinger WH
    Oecologia; 1994 Jul; 98(2):159-166. PubMed ID: 28313973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of elevated CO2 on growth, carbon assimilation, photosynthate accumulation and related enzymes in rice leaves during sink-source transition.
    Li JY; Liu XH; Cai QS; Gu H; Zhang SS; Wu YY; Wang CJ
    J Integr Plant Biol; 2008 Jun; 50(6):723-32. PubMed ID: 18713413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photosynthate distribution patterns in cherrybark oak seedling sprouts.
    Lockhart BR; Hodges JD; Gardiner ES; Ezell AW
    Tree Physiol; 2003 Nov; 23(16):1137-46. PubMed ID: 14522719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Will carbon isotope discrimination be useful as a tool for analysing the functional response of barley plants to salinity under the future atmospheric CO₂ conditions?
    Pérez-López U; Mena-Petite A; Muñoz-Rueda A
    Plant Sci; 2014 Sep; 226():71-81. PubMed ID: 25113452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth overcompensation against O3 exposure in two Japanese oak species, Quercus mongolica var. crispula and Quercus serrata, grown under elevated CO2.
    Kitao M; Komatsu M; Yazaki K; Kitaoka S; Tobita H
    Environ Pollut; 2015 Nov; 206():133-41. PubMed ID: 26162332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought.
    Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT
    Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.