These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33862891)

  • 1. Differential responses of grass and a dwarf shrub to long-term changes in soil microbial biomass C, N and P following factorial addition of NPK fertilizer, fungicide and labile carbon to a heath.
    Michelsen A; Graglia E; Schmidt IK; Jonasson S; Sleep D; Quarmby C
    New Phytol; 1999 Sep; 143(3):523-538. PubMed ID: 33862891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial biomass C, N and P in two arctic soils and responses to addition of NPK fertilizer and sugar: implications for plant nutrient uptake.
    Jonasson S; Michelsen A; Schmidt IK; Nielsen EV; Callaghan TV
    Oecologia; 1996 Jun; 106(4):507-515. PubMed ID: 28307451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of growth, and effects on nutrient uptake of arctic graminoids by leaf extracts - allelopathy or resource competition between plants and microbes?
    Michelsen A; Schmidt IK; Jonasson S; Dighton J; Jones HE; Callaghan TV
    Oecologia; 1995 Sep; 103(4):407-418. PubMed ID: 28306988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of labile soil carbon on nutrient partitioning between an arctic graminoid and microbes.
    Schmidt IK; Michelsen A; Jonasson S
    Oecologia; 1997 Nov; 112(4):557-565. PubMed ID: 28307634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascular plant
    Michelsen A; Quarmby C; Sleep D; Jonasson S
    Oecologia; 1998 Jul; 115(3):406-418. PubMed ID: 28308434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects on plant production after addition of labile carbon to arctic/alpine soils.
    Schmidt IK; Michelsen A; Jonasson S
    Oecologia; 1997 Oct; 112(3):305-313. PubMed ID: 28307477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shoot biomass, δ
    Michelsen A; Jonasson S; Sleep D; Havström M; Callaghan TV
    Oecologia; 1996 Jan; 105(1):1-12. PubMed ID: 28307116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaf
    Michelsen A; Schmidt IK; Jonasson S; Quarmby C; Sleep D
    Oecologia; 1996 Jan; 105(1):53-63. PubMed ID: 28307122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental herbivore exclusion, shrub introduction, and carbon sequestration in alpine plant communities.
    Sørensen MV; Graae BJ; Hagen D; Enquist BJ; Nystuen KO; Strimbeck R
    BMC Ecol; 2018 Aug; 18(1):29. PubMed ID: 30165832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Close coupling of plant functional types with soil microbial community composition drives soil carbon and nutrient cycling in tundra heath.
    Koranda M; Rinnan R; Michelsen A
    Plant Soil; 2023; 488(1-2):551-572. PubMed ID: 37600962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Above- and belowground responses of Arctic tundra ecosystems to altered soil nutrients and mammalian herbivory.
    Gough L; Moore JC; Shaver GR; Simpson RT; Johnson DR
    Ecology; 2012 Jul; 93(7):1683-94. PubMed ID: 22919914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fire increases soil nitrogen retention and alters nitrogen uptake patterns among dominant shrub species in an Arctic dry heath tundra.
    Xu W; Elberling B; Ambus PL
    Sci Total Environ; 2022 Feb; 807(Pt 3):150990. PubMed ID: 34656575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vegetation and soil responses to added carbon and nutrients remain six years after discontinuation of long-term treatments.
    Liu N; Michelsen A; Rinnan R
    Sci Total Environ; 2020 Jun; 722():137885. PubMed ID: 32199383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limiting resources for soil microbial growth in climate change simulation treatments in the subarctic.
    Yuan M; Na M; Hicks LC; Rousk J
    Ecology; 2024 Jan; 105(1):e4210. PubMed ID: 37989722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does long-term soil warming affect microbial element limitation? A test by short-term assays of microbial growth responses to labile C, N and P additions.
    Shi C; Urbina-Malo C; Tian Y; Heinzle J; Kwatcho Kengdo S; Inselsbacher E; Borken W; Schindlbacher A; Wanek W
    Glob Chang Biol; 2023 Apr; 29(8):2188-2202. PubMed ID: 36622092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Labile substrates quality as the main driving force of microbial mineralization activity in a poplar plantation soil under elevated CO2 and nitrogen fertilization.
    Lagomarsino A; Moscatelli MC; De Angelis P; Grego S
    Sci Total Environ; 2006 Dec; 372(1):256-65. PubMed ID: 17023027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulated rhizosphere deposits induce microbial N-mining that may accelerate shrubification in the subarctic.
    Hicks LC; Leizeaga A; Rousk K; Michelsen A; Rousk J
    Ecology; 2020 Sep; 101(9):e03094. PubMed ID: 32379897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant and microbial responses to nitrogen and phosphorus addition across an elevational gradient in subarctic tundra.
    Sundqvist MK; Liu Z; Giesler R; Wardle DA
    Ecology; 2014 Jul; 95(7):1819-35. PubMed ID: 25163116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts of Arctic Shrubs on Root Traits and Belowground Nutrient Cycles Across a Northern Alaskan Climate Gradient.
    Chen W; Tape KD; Euskirchen ES; Liang S; Matos A; Greenberg J; Fraterrigo JM
    Front Plant Sci; 2020; 11():588098. PubMed ID: 33362815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Litter of the hemiparasite Bartsia alpina enhances plant growth: evidence for a functional role in nutrient cycling.
    Quested HM; Press MC; Callaghan TV
    Oecologia; 2003 May; 135(4):606-14. PubMed ID: 12684861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.