These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33862906)

  • 1. Effect of elevated CO
    Poole I; Lawson T; Weyers JDB; Raven JA
    New Phytol; 2000 Mar; 145(3):511-521. PubMed ID: 33862906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elevated CO
    Zheng Y; Li F; Hao L; Yu J; Guo L; Zhou H; Ma C; Zhang X; Xu M
    BMC Plant Biol; 2019 Jun; 19(1):255. PubMed ID: 31195963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment.
    Temperton VM; Grayston SJ; Jackson G; Barton CV; Millard P; Jarvis PG
    Tree Physiol; 2003 Oct; 23(15):1051-9. PubMed ID: 12975129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis.
    Tanaka Y; Sugano SS; Shimada T; Hara-Nishimura I
    New Phytol; 2013 May; 198(3):757-764. PubMed ID: 23432385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elevated carbon dioxide ameliorates the effects of ozone on photosynthesis and growth: species respond similarly regardless of photosynthetic pathway or plant functional group.
    Volin JC; Reich PB; Givnish TJ
    New Phytol; 1998 Feb; 138(2):315-325. PubMed ID: 33863086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton.
    Singh SK; Badgujar G; Reddy VR; Fleisher DH; Bunce JA
    J Plant Physiol; 2013 Jun; 170(9):801-13. PubMed ID: 23384758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of soil temperature and elevated atmospheric CO2 concentration on gas exchange, in vivo carboxylation and chlorophyll fluorescence in jack pine and white birch seedlings.
    Zhang S; Dang QL
    Tree Physiol; 2005 May; 25(5):523-31. PubMed ID: 15741153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic variation in stomatal and biochemical limitations to photosynthesis in the annual plant, Polygonum arenastrum.
    Geber MA; Dawson TE
    Oecologia; 1997 Feb; 109(4):535-546. PubMed ID: 28307337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant adaptation or acclimation to rising CO
    Watson-Lazowski A; Lin Y; Miglietta F; Edwards RJ; Chapman MA; Taylor G
    Glob Chang Biol; 2016 Nov; 22(11):3760-3773. PubMed ID: 27539677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does long-term cultivation of saplings under elevated CO2 concentration influence their photosynthetic response to temperature?
    Šigut L; Holišová P; Klem K; Šprtová M; Calfapietra C; Marek MV; Špunda V; Urban O
    Ann Bot; 2015 Nov; 116(6):929-39. PubMed ID: 25851132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesophyll conductance to CO
    Watanabe M; Kamimaki Y; Mori M; Okabe S; Arakawa I; Kinose Y; Nakaba S; Izuta T
    J Plant Res; 2018 Nov; 131(6):907-914. PubMed ID: 30203164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing atmospheric CO2 and canopy temperature induces anatomical and physiological changes in leaves of the C4 forage species Panicum maximum.
    Habermann E; San Martin JAB; Contin DR; Bossan VP; Barboza A; Braga MR; Groppo M; Martinez CA
    PLoS One; 2019; 14(2):e0212506. PubMed ID: 30779815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of CO
    Ceulemans R; VAN Praet L; Jiang XN
    New Phytol; 1995 Sep; 131(1):99-107. PubMed ID: 33863170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stomatal function, density and pattern, and CO
    Vráblová M; Vrábl D; Hronková M; Kubásek J; Šantrůček J
    Plant Biol (Stuttg); 2017 Sep; 19(5):689-701. PubMed ID: 28453883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2 - and ABA-induced stomatal closing.
    Azoulay-Shemer T; Palomares A; Bagheri A; Israelsson-Nordstrom M; Engineer CB; Bargmann BO; Stephan AB; Schroeder JI
    Plant J; 2015 Aug; 83(4):567-81. PubMed ID: 26096271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Super-elevated CO2 interferes with stomatal response to ABA and night closure in soybean (Glycine max).
    Levine LH; Richards JT; Wheeler RM
    J Plant Physiol; 2009 Jun; 166(9):903-13. PubMed ID: 19131142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Responses of diurnal variation of flag-leaf photosynthesis and photosynthetic pigment content to elevated atmospheric CO
    Yuan MM; Zhu JG; Liu G; Wang WL
    Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):167-175. PubMed ID: 29692025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthesis and growth responses of mustard (Brassica juncea L. cv Pusa Bold) plants to free air carbon dioxide enrichment (FACE).
    Ruhil K; Sheeba ; Ahmad A; Iqbal M; Tripathy BC
    Protoplasma; 2015 Jul; 252(4):935-46. PubMed ID: 25471475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2.
    Tricker PJ; Trewin H; Kull O; Clarkson GJ; Eensalu E; Tallis MJ; Colella A; Doncaster CP; Sabatti M; Taylor G
    Oecologia; 2005 May; 143(4):652-60. PubMed ID: 15909132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species.
    Dreyer E; Le Roux X; Montpied P; Daudet FA; Masson F
    Tree Physiol; 2001 Mar; 21(4):223-32. PubMed ID: 11276416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.