These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33862920)

  • 1. Comparison of Gaeumannomyces- and Phialophora-like fungal pathogens from maize and other plants using DNA methods.
    Ward E; Bateman GL
    New Phytol; 1999 Feb; 141(2):323-331. PubMed ID: 33862920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of fungi within the Gaeumannomyces-Phialophora complex by analysis of ribosomal DNA sequences.
    Bryan GT; Daniels MJ; Osbourn AE
    Appl Environ Microbiol; 1995 Feb; 61(2):681-9. PubMed ID: 7574606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation, characterization, and sensitivity to 2,4-diacetylphloroglucinol of isolates of Phialophora spp. from Washington wheat fields.
    Kwak YS; Bakker PA; Glandorf DC; Rice JT; Paulitz TC; Weller DM
    Phytopathology; 2010 May; 100(5):404-14. PubMed ID: 20373960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Relations between the fungi Gaeumannomyces graminis and Phialophora radicicola when growing together outside the host (author's transl)].
    Novotný J
    Zentralbl Bakteriol Naturwiss; 1979; 134(5):419-22. PubMed ID: 543347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cephalosporium maydis is a distinct species in the Gaeumannomyces-Harpophora species complex.
    Saleh AA; Leslie JF
    Mycologia; 2004; 96(6):1294-305. PubMed ID: 21148953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Take-all or nothing.
    Hernández-Restrepo M; Groenewald JZ; Elliott ML; Canning G; McMillan VE; Crous PW
    Stud Mycol; 2016; 83():19-48. PubMed ID: 27504028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detoxification of Benzoxazolinone Allelochemicals from Wheat by Gaeumannomyces graminis var. tritici, G. graminis var. graminis, G. graminis var. avenae, and Fusarium culmorum.
    Friebe A; Vilich V; Hennig L; Kluge M; Sicker D
    Appl Environ Microbiol; 1998 Jul; 64(7):2386-91. PubMed ID: 9647804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gaeumannomyces graminis vars. avenae, graminis, and tritici Identified Using PCR Amplification of Avenacinase-like Genes.
    Rachdawong S; Cramer CL; Grabau EA; Stromberg VK; Lacy GH; Stromberg EL
    Plant Dis; 2002 Jun; 86(6):652-660. PubMed ID: 30823240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggressiveness of Cephalosporium maydis causing late wilt of maize in Spain.
    García-Carneros AB; Girón I; Molinero-Ruiz L
    Commun Agric Appl Biol Sci; 2012; 77(3):173-9. PubMed ID: 23878971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cephalosporium maydis, the Cause of Late Wilt in Maize, a Pathogen New to Portugal and Spain.
    Molinero-Ruiz ML; Melero-Vara JM; Mateos A
    Plant Dis; 2010 Mar; 94(3):379. PubMed ID: 30754223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. THE DARK SIDE OF THE MYCELIUM: Melanins of Phytopathogenic Fungi.
    Henson JM; Butler MJ; Day AW
    Annu Rev Phytopathol; 1999; 37():447-471. PubMed ID: 11701831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhizosphere microflora and colonization of wheat roots by Gaeumannomyces graminis var. tritici after foliar application of urea and benomyl.
    Vraný J; Stanĕk M; Vancura V
    Folia Microbiol (Praha); 1980; 25(6):476-82. PubMed ID: 6777280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of Gaeumannomyces graminis Varieties Using Polymerase Chain Reaction with Variety-Specific Primers.
    Fouly HM; Wilkinson HT
    Plant Dis; 2000 Sep; 84(9):947-951. PubMed ID: 30832025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity, virulence, and 2,4-diacetylphloroglucinol sensitivity of Gaeumannomyces graminis var. tritici isolates from Washington state.
    Kwak YS; Bakker PA; Glandorf DC; Rice JT; Paulitz TC; Weller DM
    Phytopathology; 2009 May; 99(5):472-9. PubMed ID: 19351242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A volatile factor inducing transmissible lysis in Gaeumannomyces graminis (Sacc.) Arx and Olivier var. tritici Walker.
    Sivasithamparam K; Stukely M; Parker CA
    Can J Microbiol; 1975 Mar; 21(3):293-300. PubMed ID: 1116042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gaeumannomyces graminis var. graminis Isolated from Emerald Zoysiagrass in Texas.
    Tomaso-Peterson M; Trevathan LE; Gonzalez MS; Colbaugh PF
    Plant Dis; 2000 Oct; 84(10):1151. PubMed ID: 30831912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EARLY SENESCENCE OF THE ROOT CORTEX OF AGRICULTURAL GRASSES, AND OF WHEAT FOLLOWING ROOT AMPUTATION OR INFECTION BY THE TAKE-ALL FUNGUS.
    Kirk JJ; Deacon JW
    New Phytol; 1986 Sep; 104(1):63-75. PubMed ID: 33873808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gaeumannomyces graminis, the take-all fungus and its relatives.
    Freeman J; Ward E
    Mol Plant Pathol; 2004 Jul; 5(4):235-52. PubMed ID: 20565593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA Probe for Identification of the Take-All Fungus, Gaeumannomyces graminis.
    Henson JM
    Appl Environ Microbiol; 1989 Feb; 55(2):284-8. PubMed ID: 16347842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel screening strategy reveals a potent Bacillus antagonist capable of mitigating wheat take-all disease caused by Gaeumannomyces graminis var. tritici.
    Zhang DD; Guo XJ; Wang YJ; Gao TG; Zhu BC
    Lett Appl Microbiol; 2017 Dec; 65(6):512-519. PubMed ID: 28977681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.