These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33862970)

  • 1. Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae).
    Bert V; Macnair MR; DE Laguerie P; Saumitou-Laprade P; Petit D
    New Phytol; 2000 May; 146(2):225-233. PubMed ID: 33862970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations?
    Bert V; Bonnin I; Saumitou-Laprade P; De Laguérie P; Petit D
    New Phytol; 2002 Jul; 155(1):47-57. PubMed ID: 33873296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential preadaptation to anthropogenic pollution: evidence from a common quantitative trait locus for zinc and cadmium tolerance in metallicolous and nonmetallicolous accessions of Arabidopsis halleri.
    Meyer CL; Pauwels M; Briset L; Godé C; Salis P; Bourceaux A; Souleman D; Frérot H; Verbruggen N
    New Phytol; 2016 Dec; 212(4):934-943. PubMed ID: 27504589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A broad-scale analysis of population differentiation for Zn tolerance in an emerging model species for tolerance study: Arabidopsis halleri (Brassicaceae).
    Pauwels M; Frérot H; Bonnin I; Saumitou-Laprade P
    J Evol Biol; 2006 Nov; 19(6):1838-50. PubMed ID: 17040381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri.
    Sarret G; Saumitou-Laprade P; Bert V; Proux O; Hazemann JL; Traverse A; Marcus MA; Manceau A
    Plant Physiol; 2002 Dec; 130(4):1815-26. PubMed ID: 12481065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation to high zinc depends on distinct mechanisms in metallicolous populations of Arabidopsis halleri.
    Schvartzman MS; Corso M; Fataftah N; Scheepers M; Nouet C; Bosman B; Carnol M; Motte P; Verbruggen N; Hanikenne M
    New Phytol; 2018 Apr; 218(1):269-282. PubMed ID: 29292833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variability of zinc tolerance among and within populations of the pseudometallophyte species Arabidopsis halleri and possible role of directional selection.
    Meyer CL; Kostecka AA; Saumitou-Laprade P; Créach A; Castric V; Pauwels M; Frérot H
    New Phytol; 2010 Jan; 185(1):130-42. PubMed ID: 19863732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri.
    Meyer CL; Juraniec M; Huguet S; Chaves-Rodriguez E; Salis P; Isaure MP; Goormaghtigh E; Verbruggen N
    J Exp Bot; 2015 Jun; 66(11):3215-27. PubMed ID: 25873677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): an analysis of quantitative trait loci.
    Willems G; Dräger DB; Courbot M; Godé C; Verbruggen N; Saumitou-Laprade P
    Genetics; 2007 May; 176(1):659-74. PubMed ID: 17409091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The MTP1 promoters from Arabidopsis halleri reveal cis-regulating elements for the evolution of metal tolerance.
    Fasani E; DalCorso G; Varotto C; Li M; Visioli G; Mattarozzi M; Furini A
    New Phytol; 2017 Jun; 214(4):1614-1630. PubMed ID: 28332702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri.
    Becher M; Talke IN; Krall L; Krämer U
    Plant J; 2004 Jan; 37(2):251-68. PubMed ID: 14690509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana--the role in zinc tolerance.
    Shanmugam V; Lo JC; Wu CL; Wang SL; Lai CC; Connolly EL; Huang JL; Yeh KC
    New Phytol; 2011 Apr; 190(1):125-137. PubMed ID: 21219335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase.
    Courbot M; Willems G; Motte P; Arvidsson S; Roosens N; Saumitou-Laprade P; Verbruggen N
    Plant Physiol; 2007 Jun; 144(2):1052-65. PubMed ID: 17434989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri.
    Zhao FJ; Jiang RF; Dunham SJ; McGrath SP
    New Phytol; 2006; 172(4):646-54. PubMed ID: 17096791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early Zn2+-induced effects on membrane potential account for primary heavy metal susceptibility in tolerant and sensitive Arabidopsis species.
    Kenderesová L; Stanová A; Pavlovkin J; Durisová E; Nadubinská M; Ciamporová M; Ovecka M
    Ann Bot; 2012 Jul; 110(2):445-59. PubMed ID: 22645116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A putative novel role for plant defensins: a defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance.
    Mirouze M; Sels J; Richard O; Czernic P; Loubet S; Jacquier A; François IE; Cammue BP; Lebrun M; Berthomieu P; Marquès L
    Plant J; 2006 Aug; 47(3):329-42. PubMed ID: 16792695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc- and nickel-induced changes in fatty acid profiles in the zinc hyperaccumulator Arabidopsis halleri and non-accumulator Arabidopsis lyrata.
    Seregin IV; Ivanova TV; Voronkov AS; Kozhevnikova AD; Schat H
    Plant Physiol Biochem; 2023 Apr; 197():107640. PubMed ID: 36958152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative trait loci analysis of mineral element concentrations in an Arabidopsis halleri x Arabidopsis lyrata petraea F2 progeny grown on cadmium-contaminated soil.
    Willems G; Frérot H; Gennen J; Salis P; Saumitou-Laprade P; Verbruggen N
    New Phytol; 2010 Jul; 187(2):368-379. PubMed ID: 20487315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation of Arabidopsis halleri to extreme metal pollution through limited metal accumulation involves changes in cell wall composition and metal homeostasis.
    Corso M; An X; Jones CY; Gonzalez-Doblas V; Schvartzman MS; Malkowski E; Willats WGT; Hanikenne M; Verbruggen N
    New Phytol; 2021 Apr; 230(2):669-682. PubMed ID: 33421150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri.
    Talke IN; Hanikenne M; Krämer U
    Plant Physiol; 2006 Sep; 142(1):148-67. PubMed ID: 16844841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.