These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 3386298)

  • 1. Quantitative analysis of axonal branching using the retrograde transport of fluorescent latex microspheres.
    Cornwall J; Phillipson OT
    J Neurosci Methods; 1988 May; 24(1):1-9. PubMed ID: 3386298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single neurones of the basal forebrain and laterodorsal tegmental nucleus project by collateral axons to the olfactory bulb and the mediodorsal nucleus in the rat.
    Cornwall J; Phillipson OT
    Brain Res; 1989 Jul; 491(1):194-8. PubMed ID: 2765882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mediodorsal and reticular thalamic nuclei receive collateral axons from prefrontal cortex and laterodorsal tegmental nucleus in the rat.
    Cornwall J; Phillipson OT
    Neurosci Lett; 1988 May; 88(2):121-6. PubMed ID: 3380351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex.
    Katz LC; Burkhalter A; Dreyer WJ
    Nature; 1984 Aug 9-15; 310(5977):498-500. PubMed ID: 6205278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Projections from nucleus raphe obscurus to the periaqueductal grey matter in the rat.
    Semenenko FM; Lumb BM; Lovick TA; Semenenka FM
    Neurosci Lett; 1994 Mar; 170(1):9-12. PubMed ID: 7999147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unidirectional axonal transport in in vitro adult rat brain explants.
    Senatorov VV; Hu B
    Neuroscience; 1998 Jan; 82(1):59-67. PubMed ID: 9483503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent latex microspheres for retrograde tracing of neurons in mouse basal forebrain combined with immunocytochemistry: a methodical approach.
    Härtig W; Paulke BR; Brückner G
    Acta Histochem Suppl; 1992; 42():261-5. PubMed ID: 1584975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term retrograde labelling of neurons.
    Divac I; Mogensen J
    Brain Res; 1990 Aug; 524(2):339-41. PubMed ID: 1705466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of retrogradely transported fluorescent latex microspheres in rat lumbosacral ventral root axons following peripheral crush injury: a light and electron microscopic study.
    Persson HG; Gatzinsky KP
    Brain Res; 1993 Dec; 630(1-2):115-24. PubMed ID: 8118679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo anterograde and retrograde axonal transport of the fluorescent rhodamine-dextran-amine, Fluoro-Ruby, within the CNS.
    Schmued L; Kyriakidis K; Heimer L
    Brain Res; 1990 Aug; 526(1):127-34. PubMed ID: 1706635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunofluorescence in situ hybridization (IFISH) in neurones retrogradely labelled with rhodamine latex microspheres.
    Senatorov VV; Trudeau VL; Hu B
    Brain Res Brain Res Protoc; 1997 Feb; 1(1):49-56. PubMed ID: 9385047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent latex microspheres as a retrograde tracer in the peripheral nervous system.
    Colin W; Donoff RB; Foote WE
    Brain Res; 1989 May; 486(2):334-9. PubMed ID: 2659138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of branching in the projection from the inferior olive to the x and lateral c1 zones of the cat cerebellum using a combined electrophysiological and retrograde fluorescent double-labelling technique.
    Apps R; Trott JR; Dietrichs E
    Exp Brain Res; 1991; 87(1):141-52. PubMed ID: 1721877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size distribution of rhodamine-labelled microspheres retrogradely transported in cultured neurons.
    Holländer H; Egensperger R; Dirlich G
    J Neurosci Methods; 1989 Jul; 29(1):1-4. PubMed ID: 2474728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collateral axonal projections from rostral ventromedial medullary nitric oxide synthase containing neurons to brainstem autonomic sites.
    Babic T; de Oliveira CV; Ciriello J
    Brain Res; 2008 May; 1211():44-56. PubMed ID: 18423427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro- and antero-grade transport and immunohistochemical study.
    Semba K; Fibiger HC
    J Comp Neurol; 1992 Sep; 323(3):387-410. PubMed ID: 1281170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of latex microspheres by peripheral nerves of the rat.
    Dawson NJ; Pierau FK
    Cytobios; 1994; 79(316):31-43. PubMed ID: 7842728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double-labelling with rhodamine beads and biocytin: a technique for studying corticospinal and other projection neurons in vitro.
    Tseng GF; Parada I; Prince DA
    J Neurosci Methods; 1991 Apr; 37(2):121-31. PubMed ID: 1908929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axonal branching of basal forebrain projections to the neocortex: a double-labeling study in the cat.
    Boylan MK; Fisher RS; Hull CD; Buchwald NA; Levine MS
    Brain Res; 1986 Jun; 375(1):176-81. PubMed ID: 2424567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serotoninergic and nonserotoninergic neurons in the medullary raphe system have axon collateral projections to autonomic and somatic cell groups in the medulla and spinal cord.
    Allen GV; Cechetto DF
    J Comp Neurol; 1994 Dec; 350(3):357-66. PubMed ID: 7533797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.