BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33863026)

  • 1. Litter nutrients and retranslocation in a central African rain forest dominated by ectomycorrhizal trees.
    Chuyong GB; Newbery DM; Songwe NC
    New Phytol; 2000 Dec; 148(3):493-510. PubMed ID: 33863026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does low phosphorus supply limit seedling establishment and tree growth in groves of ectomycorrhizal trees in a central African rainforest?
    Newbery DM; Chuyong GB; Green JJ; Songwe NC; Tchuenteu F; Zimmermann L
    New Phytol; 2002 Nov; 156(2):297-311. PubMed ID: 33873273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limitation of seedling growth by potassium and magnesium supply for two ectomycorrhizal tree species of a Central African rain forest and its implication for their recruitment.
    Neba GA; Newbery DM; Chuyong GB
    Ecol Evol; 2016 Jan; 6(1):125-42. PubMed ID: 26811779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light and seed size affect establishment of grove-forming ectomycorrhizal rain forest tree species.
    Green JJ; Newbery DM
    New Phytol; 2001 Jul; 151(1):271-289. PubMed ID: 33873393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shade and leaf loss affect establishment of grove-forming ectomycorrhizal rain forest tree species.
    Green JJ; Newbery DM
    New Phytol; 2001 Jul; 151(1):291-309. PubMed ID: 33873392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mast fruiting of large ectomycorrhizal African rain forest trees: importance of dry season intensity, and the resource-limitation hypothesis.
    Newbery DM; Chuyong GB; Zimmermann L
    New Phytol; 2006; 170(3):561-79. PubMed ID: 16626477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nutrient cycling in forests.
    Attiwill PM; Adams MA
    New Phytol; 1993 Aug; 124(4):561-582. PubMed ID: 33874438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rainfall and labile carbon availability control litter nitrogen dynamics in a tropical dry forest.
    Anaya CA; GarcĂ­a-Oliva F; Jaramillo VJ
    Oecologia; 2007 Jan; 150(4):602-10. PubMed ID: 17024378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal variations in litterfall biomass input and nutrient return under long-term prescribed burning in a wet sclerophyll forest, Queensland, Australia.
    Muqaddas B; Lewis T
    Sci Total Environ; 2020 Mar; 706():136035. PubMed ID: 31841841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutrient regulation of organic matter decomposition in a tropical rain forest.
    Cleveland CC; Reed SC; Townsend AR
    Ecology; 2006 Feb; 87(2):492-503. PubMed ID: 16637373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contrasting seasonal leaf habits of canopy trees between tropical dry-deciduous and evergreen forests in Thailand.
    Ishida A; Diloksumpun S; Ladpala P; Staporn D; Panuthai S; Gamo M; Yazaki K; Ishizuka M; Puangchit L
    Tree Physiol; 2006 May; 26(5):643-56. PubMed ID: 16452078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems.
    Sayer EJ
    Biol Rev Camb Philos Soc; 2006 Feb; 81(1):1-31. PubMed ID: 16460580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking spatial patterns of leaf litterfall and soil nutrients in a tropical forest: a neighborhood approach.
    Uriarte M; Turner BL; Thompson J; Zimmerman JK
    Ecol Appl; 2015 Oct; 25(7):2022-34. PubMed ID: 26591466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands.
    Niinemets U; Tamm U
    Tree Physiol; 2005 Aug; 25(8):1001-14. PubMed ID: 15929931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production.
    Kotowska MM; Leuschner C; Triadiati T; Hertel D
    Oecologia; 2016 Feb; 180(2):601-18. PubMed ID: 26546083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.
    Schilling EM; Waring BG; Schilling JS; Powers JS
    Oecologia; 2016 Sep; 182(1):287-97. PubMed ID: 27236291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density-dependent dynamics of a dominant rain forest tree change with juvenile stage and time of masting.
    Norghauer JM; Newbery DM
    Oecologia; 2016 May; 181(1):207-23. PubMed ID: 26792661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tree stem bases are sources of CH
    Welch B; Gauci V; Sayer EJ
    Glob Chang Biol; 2019 Jan; 25(1):361-372. PubMed ID: 30367532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rain forest nutrient cycling and productivity in response to large-scale litter manipulation.
    Wood TE; Lawrence D; Clark DA; Chazdon RL
    Ecology; 2009 Jan; 90(1):109-21. PubMed ID: 19294918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaf herbivory and decomposability in a Malaysian tropical rain forest.
    Kurokawa H; Nakashizuka T
    Ecology; 2008 Sep; 89(9):2645-56. PubMed ID: 18831185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.