These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33863170)

  • 1. Effects of CO
    Ceulemans R; VAN Praet L; Jiang XN
    New Phytol; 1995 Sep; 131(1):99-107. PubMed ID: 33863170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpaxP. deltoides).
    Miyazawa S; Livingston NJ; Turpin DH
    J Exp Bot; 2006; 57(2):373-80. PubMed ID: 16172139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves.
    Driscoll SP; Prins A; Olmos E; Kunert KJ; Foyer CH
    J Exp Bot; 2006; 57(2):381-90. PubMed ID: 16371401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2.
    Tricker PJ; Trewin H; Kull O; Clarkson GJ; Eensalu E; Tallis MJ; Colella A; Doncaster CP; Sabatti M; Taylor G
    Oecologia; 2005 May; 143(4):652-60. PubMed ID: 15909132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leaf stomatal and epidermal cell development: identification of putative quantitative trait loci in relation to elevated carbon dioxide concentration in poplar.
    Ferris R; Long L; Bunn SM; Robinson KM; Bradshaw HD; Rae AM; Taylor G
    Tree Physiol; 2002 Jun; 22(9):633-40. PubMed ID: 12069919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of elevated CO
    Poole I; Lawson T; Weyers JDB; Raven JA
    New Phytol; 2000 Mar; 145(3):511-521. PubMed ID: 33862906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ozone sensitivity of five poplar clones is not related to stomatal conductance, constitutive antioxidant levels and morphology of leaves.
    Shang B; Feng Z; Gao F; Calatayud V
    Sci Total Environ; 2020 Jan; 699():134402. PubMed ID: 31683210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaf growth of hybrid poplar following exposure to elevated CO
    Gardner SDL; Taylor G; Bosac C
    New Phytol; 1995 Sep; 131(1):81-90. PubMed ID: 33863167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of elevated CO
    Sathee L; Jain V
    Protoplasma; 2022 May; 259(3):703-716. PubMed ID: 34374877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of photosynthetic induction and transient limitations during the induction phase in young and mature leaves from three poplar clones.
    Urban O; Sprtová M; Kosvancová M; Tomásková I; Lichtenthaler HK; Marek MV
    Tree Physiol; 2008 Aug; 28(8):1189-97. PubMed ID: 18519250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the mesophyll on stomatal responses in amphistomatous leaves.
    Mott KA; Peak D
    Plant Cell Environ; 2018 Dec; 41(12):2835-2843. PubMed ID: 30073677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pore size regulates operating stomatal conductance, while stomatal densities drive the partitioning of conductance between leaf sides.
    Fanourakis D; Giday H; Milla R; Pieruschka R; Kjaer KH; Bolger M; Vasilevski A; Nunes-Nesi A; Fiorani F; Ottosen CO
    Ann Bot; 2015 Mar; 115(4):555-65. PubMed ID: 25538116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amphistomy: stomata patterning inferred from 13C content and leaf-side specific deposition of epicuticular wax.
    Askanbayeva B; Janová J; Kubásek J; Zeisler-Diehl VV; Schreiber L; Muir CD; Šantrůček J
    Ann Bot; 2024 Jun; ():. PubMed ID: 38836501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Super-elevated CO2 interferes with stomatal response to ABA and night closure in soybean (Glycine max).
    Levine LH; Richards JT; Wheeler RM
    J Plant Physiol; 2009 Jun; 166(9):903-13. PubMed ID: 19131142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing atmospheric CO2 and canopy temperature induces anatomical and physiological changes in leaves of the C4 forage species Panicum maximum.
    Habermann E; San Martin JAB; Contin DR; Bossan VP; Barboza A; Braga MR; Groppo M; Martinez CA
    PLoS One; 2019; 14(2):e0212506. PubMed ID: 30779815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone.
    Uddling J; Teclaw RM; Pregitzer KS; Ellsworth DS
    Tree Physiol; 2009 Nov; 29(11):1367-80. PubMed ID: 19773339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two sides to every leaf: water and CO
    Drake PL; de Boer HJ; Schymanski SJ; Veneklaas EJ
    New Phytol; 2019 May; 222(3):1179-1187. PubMed ID: 30570766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stomatal Conductance and Morphology of Arbuscular Mycorrhizal Wheat Plants Response to Elevated CO
    Zhu X; Cao Q; Sun L; Yang X; Yang W; Zhang H
    Front Plant Sci; 2018; 9():1363. PubMed ID: 30283478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice.
    Shimono H; Nakamura H; Hasegawa T; Okada M
    Glob Chang Biol; 2013 Aug; 19(8):2444-53. PubMed ID: 23564676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs.
    McKown AD; Guy RD; Quamme L; Klápště J; La Mantia J; Constabel CP; El-Kassaby YA; Hamelin RC; Zifkin M; Azam MS
    Mol Ecol; 2014 Dec; 23(23):5771-90. PubMed ID: 25319679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.