These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 33863220)
1. Sensitivity of stomatal and canopy conductance to elevated CO Wullschleger SD; Gunderson CA; Hanson PJ; Wilson KB; Norby RJ New Phytol; 2002 Mar; 153(3):485-496. PubMed ID: 33863220 [TBL] [Abstract][Full Text] [Related]
2. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice. Shimono H; Nakamura H; Hasegawa T; Okada M Glob Chang Biol; 2013 Aug; 19(8):2444-53. PubMed ID: 23564676 [TBL] [Abstract][Full Text] [Related]
3. Forest stand and canopy development unaltered by 12 years of CO2 enrichment. Norby RJ; Warren JM; Iversen CM; Childs J; Jawdy SS; Walker AP Tree Physiol; 2022 Mar; 42(3):428-440. PubMed ID: 34387351 [TBL] [Abstract][Full Text] [Related]
4. Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone. Uddling J; Teclaw RM; Pregitzer KS; Ellsworth DS Tree Physiol; 2009 Nov; 29(11):1367-80. PubMed ID: 19773339 [TBL] [Abstract][Full Text] [Related]
5. Increases in atmospheric CO2 have little influence on transpiration of a temperate forest canopy. Tor-ngern P; Oren R; Ward EJ; Palmroth S; McCarthy HR; Domec JC New Phytol; 2015 Jan; 205(2):518-25. PubMed ID: 25346045 [TBL] [Abstract][Full Text] [Related]
6. Leaf respiration at different canopy positions in sweetgum (Liquidambar styraciflua) grown in ambient and elevated concentrations of carbon dioxide in the field. Tissue DT; Lewis JD; Wullschleger SD; Amthor JS; Griffin KL; Anderson OR Tree Physiol; 2002 Nov; 22(15-16):1157-66. PubMed ID: 12414375 [TBL] [Abstract][Full Text] [Related]
8. Canopy conductance of Pinus taeda, Liquidambar styraciflua and Quercus phellos under varying atmospheric and soil water conditions. Pataki DE; Oren R; Katul G; Sigmon J Tree Physiol; 1998 May; 18(5):307-315. PubMed ID: 12651370 [TBL] [Abstract][Full Text] [Related]
9. Leaf senescence and late-season net photosynthesis of sun and shade leaves of overstory sweetgum (Liquidambar styraciflua) grown in elevated and ambient carbon dioxide concentrations. Herrick JD; Thomas RB Tree Physiol; 2003 Feb; 23(2):109-18. PubMed ID: 12533305 [TBL] [Abstract][Full Text] [Related]
10. Effects of CO2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweetgum (Liquidambar styraciflua) in a forest ecosystem. Herrick JD; Thomas RB Tree Physiol; 1999 Oct; 19(12):779-786. PubMed ID: 10562393 [TBL] [Abstract][Full Text] [Related]
11. Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions. Bunce JA Oecologia; 2004 Jun; 140(1):1-10. PubMed ID: 14557864 [TBL] [Abstract][Full Text] [Related]
12. Increasing canopy photosynthesis in rice can be achieved without a large increase in water use-A model based on free-air CO Ikawa H; Chen CP; Sikma M; Yoshimoto M; Sakai H; Tokida T; Usui Y; Nakamura H; Ono K; Maruyama A; Watanabe T; Kuwagata T; Hasegawa T Glob Chang Biol; 2018 Mar; 24(3):1321-1341. PubMed ID: 29136323 [TBL] [Abstract][Full Text] [Related]
13. Sap flux in pure aspen and mixed aspen-birch forests exposed to elevated concentrations of carbon dioxide and ozone. Uddling J; Teclaw RM; Kubiske ME; Pregitzer KS; Ellsworth DS Tree Physiol; 2008 Aug; 28(8):1231-43. PubMed ID: 18519254 [TBL] [Abstract][Full Text] [Related]
14. Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize. Hussain MZ; Vanloocke A; Siebers MH; Ruiz-Vera UM; Cody Markelz RJ; Leakey AD; Ort DR; Bernacchi CJ Glob Chang Biol; 2013 May; 19(5):1572-84. PubMed ID: 23505040 [TBL] [Abstract][Full Text] [Related]
15. Transpiration characteristics of a rubber plantation in central Cambodia. Kobayashi N; Kumagai T; Miyazawa Y; Matsumoto K; Tateishi M; Lim TK; Mudd RG; Ziegler AD; Giambelluca TW; Yin S Tree Physiol; 2014 Mar; 34(3):285-301. PubMed ID: 24646689 [TBL] [Abstract][Full Text] [Related]
16. Transpiration and canopy conductance in a pristine broad-leaved forest of Nothofagus: an analysis of xylem sap flow and eddy correlation measurements. Köstner BM; Schulze E-; Kelliher FM; Hollinger DY; Byers JN; Hunt JE; McSeveny TM; Meserth R; Weir PL Oecologia; 1992 Sep; 91(3):350-359. PubMed ID: 28313542 [TBL] [Abstract][Full Text] [Related]
17. Effects of CO Tolley LC; Strain BR Oecologia; 1985 Jan; 65(2):166-172. PubMed ID: 28310662 [TBL] [Abstract][Full Text] [Related]
18. Leaf dynamics of a deciduous forest canopy: no response to elevated CO2. Norby RJ; Sholtis JD; Gunderson CA; Jawdy SS Oecologia; 2003 Aug; 136(4):574-84. PubMed ID: 12811536 [TBL] [Abstract][Full Text] [Related]
19. The effects of elevated CO2 and nitrogen fertilization on stomatal conductance estimated from 11 years of scaled sap flux measurements at Duke FACE. Ward EJ; Oren R; Bell DM; Clark JS; McCarthy HR; Kim HS; Domec JC Tree Physiol; 2013 Feb; 33(2):135-51. PubMed ID: 23243030 [TBL] [Abstract][Full Text] [Related]
20. Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2. Tricker PJ; Trewin H; Kull O; Clarkson GJ; Eensalu E; Tallis MJ; Colella A; Doncaster CP; Sabatti M; Taylor G Oecologia; 2005 May; 143(4):652-60. PubMed ID: 15909132 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]