BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 33863338)

  • 1. Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans.
    Salomaki ED; Terpis KX; Rueckert S; Kotyk M; Varadínová ZK; Čepička I; Lane CE; Kolisko M
    BMC Biol; 2021 Apr; 19(1):77. PubMed ID: 33863338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenomics reveals Adeleorina are an ancient and distinct subgroup of Apicomplexa.
    Na I; Campos C; Lax G; Kwong WK; Keeling PJ
    Mol Phylogenet Evol; 2024 Jun; 195():108060. PubMed ID: 38485105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple Independent Origins of Apicomplexan-Like Parasites.
    Mathur V; Kolísko M; Hehenberger E; Irwin NAT; Leander BS; Kristmundsson Á; Freeman MA; Keeling PJ
    Curr Biol; 2019 Sep; 29(17):2936-2941.e5. PubMed ID: 31422883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles.
    Janouškovec J; Paskerova GG; Miroliubova TS; Mikhailov KV; Birley T; Aleoshin VV; Simdyanov TG
    Elife; 2019 Aug; 8():. PubMed ID: 31418692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Marine gregarines: evolutionary prelude to the apicomplexan radiation?
    Leander BS
    Trends Parasitol; 2008 Feb; 24(2):60-7. PubMed ID: 18226585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel functional reduction in the mitochondria of apicomplexan parasites.
    Mathur V; Wakeman KC; Keeling PJ
    Curr Biol; 2021 Jul; 31(13):2920-2928.e4. PubMed ID: 33974849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel functional reduction in the mitochondria of apicomplexan parasites.
    Keeling PJ; Mtawali M; Trznadel M; Livingston SJ; Wakeman KC
    Eur J Protistol; 2024 Jun; 94():126065. PubMed ID: 38492251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives.
    Janouškovec J; Tikhonenkov DV; Burki F; Howe AT; Kolísko M; Mylnikov AP; Keeling PJ
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10200-7. PubMed ID: 25717057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marine gregarine genomes reveal the breadth of apicomplexan diversity with a partially conserved glideosome machinery.
    Boisard J; Duvernois-Berthet E; Duval L; Schrével J; Guillou L; Labat A; Le Panse S; Prensier G; Ponger L; Florent I
    BMC Genomics; 2022 Jul; 23(1):485. PubMed ID: 35780080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of mitosome metabolism and invasion-related proteins in Cryptosporidium.
    Liu S; Roellig DM; Guo Y; Li N; Frace MA; Tang K; Zhang L; Feng Y; Xiao L
    BMC Genomics; 2016 Dec; 17(1):1006. PubMed ID: 27931183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenomics Identifies a New Major Subgroup of Apicomplexans, Marosporida class nov., with Extreme Apicoplast Genome Reduction.
    Mathur V; Kwong WK; Husnik F; Irwin NAT; Kristmundsson Á; Gestal C; Freeman M; Keeling PJ
    Genome Biol Evol; 2021 Feb; 13(2):. PubMed ID: 33566096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signs of the plastid: Enzymes involved in plastid-localized metabolic pathways in a eugregarine species.
    Yazaki E; Miyata R; Chikami Y; Harada R; Kawakubo T; Tanifuji G; Nakayama T; Yahata K; Hashimoto T; Inagaki Y
    Parasitol Int; 2021 Aug; 83():102364. PubMed ID: 33915268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogeny of gregarines (Apicomplexa) as inferred from small-subunit rDNA and beta-tubulin.
    Leander BS; Clopton RE; Keeling PJ
    Int J Syst Evol Microbiol; 2003 Jan; 53(Pt 1):345-354. PubMed ID: 12656194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogeny of marine Gregarines (Apicomplexa)--Pterospora, Lithocystis and Lankesteria--and the origin(s) of coelomic parasitism.
    Leander BS; Lloyd SA; Marshall W; Landers SC
    Protist; 2006 Feb; 157(1):45-60. PubMed ID: 16352468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gregarina niphandrodes may lack both a plastid genome and organelle.
    Toso MA; Omoto CK
    J Eukaryot Microbiol; 2007; 54(1):66-72. PubMed ID: 17300522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative genome analysis reveals a conserved family of actin-like proteins in apicomplexan parasites.
    Gordon JL; Sibley LD
    BMC Genomics; 2005 Dec; 6():179. PubMed ID: 16343347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular phylogeny and surface morphology of marine aseptate gregarines (Apicomplexa): Selenidium spp. and Lecudina spp.
    Leander BS; Harper JT; Keeling PJ
    J Parasitol; 2003 Dec; 89(6):1191-205. PubMed ID: 14740910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative ultrastructure and molecular phylogeny of Selenidium melongena n. sp. and S. terebellae Ray 1930 demonstrate niche partitioning in marine gregarine parasites (apicomplexa).
    Wakeman KC; Heintzelman MB; Leander BS
    Protist; 2014 Aug; 165(4):493-511. PubMed ID: 24998785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First Ultrastructural and Molecular Phylogenetic Evidence from the Blastogregarines, an Early Branching Lineage of Plesiomorphic Apicomplexa.
    Simdyanov TG; Paskerova GG; Valigurová A; Diakin A; Kováčiková M; Schrével J; Guillou L; Dobrovolskij AA; Aleoshin VV
    Protist; 2018 Nov; 169(5):697-726. PubMed ID: 30125804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Symbiotic Spectrum: Where Do the Gregarines Fit?
    Rueckert S; Betts EL; Tsaousis AD
    Trends Parasitol; 2019 Sep; 35(9):687-694. PubMed ID: 31345767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.