BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 33863415)

  • 21. Towards 3D printed multifunctional immobilization for proton therapy: Initial materials characterization.
    Michiels S; D'Hollander A; Lammens N; Kersemans M; Zhang G; Denis JM; Poels K; Sterpin E; Nuyts S; Haustermans K; Depuydt T
    Med Phys; 2016 Oct; 43(10):5392. PubMed ID: 27782703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Addressing Unmet Clinical Needs with 3D Printing Technologies.
    Ghosh U; Ning S; Wang Y; Kong YL
    Adv Healthc Mater; 2018 Sep; 7(17):e1800417. PubMed ID: 30004185
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solution Foaming-Treated 3D-Printed monolithic packing for enhanced solid phase extraction of trace metals.
    Chen JR; Chen JR; Su CK
    Talanta; 2022 May; 241():123237. PubMed ID: 35066281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How 3D printing can boost advances in analytical and bioanalytical chemistry.
    Ambrosi A; Bonanni A
    Mikrochim Acta; 2021 Jul; 188(8):265. PubMed ID: 34287702
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Printing for Bone Regeneration.
    Bandyopadhyay A; Mitra I; Bose S
    Curr Osteoporos Rep; 2020 Oct; 18(5):505-514. PubMed ID: 32748324
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D-printed, TiO
    Su CK; Chen WC
    Mikrochim Acta; 2018 Apr; 185(5):268. PubMed ID: 29696383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D Printing for Electrochemical Energy Applications.
    Browne MP; Redondo E; Pumera M
    Chem Rev; 2020 Mar; 120(5):2783-2810. PubMed ID: 32049499
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of poly (ε-caprolactone) coating on the properties of three-dimensional printed porous structures.
    Zhou Z; Cunningham E; Lennon A; McCarthy HO; Buchanan F; Clarke SA; Dunne N
    J Mech Behav Biomed Mater; 2017 Jun; 70():68-83. PubMed ID: 27233445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of drug-loaded hydrogels with stereolithographic 3D printing.
    Martinez PR; Goyanes A; Basit AW; Gaisford S
    Int J Pharm; 2017 Oct; 532(1):313-317. PubMed ID: 28888978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of Polymers in 3D Printing Technology for Drug Delivery - An Overview.
    Jain A; Bansal KK; Tiwari A; Rosling A; Rosenholm JM
    Curr Pharm Des; 2018; 24(42):4979-4990. PubMed ID: 30585543
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Bioinspired Hierarchical Fast Transport Network Boosting Electrochemical Performance of 3D Printed Electrodes.
    Zhao B; Wu J; Liang Z; Liang W; Yang H; Li D; Qin W; Peng M; Sun Y; Jiang L
    Adv Sci (Weinh); 2022 Dec; 9(35):e2204751. PubMed ID: 36285676
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional printed personalized drug devices with anatomical fit: a review.
    Pinho LAG; Gratieri T; Gelfuso GM; Marreto RN; Cunha-Filho M
    J Pharm Pharmacol; 2022 Oct; 74(10):1391-1405. PubMed ID: 34665263
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advancing non-destructive analysis of 3D printed medicines.
    Jørgensen AK; Ong JJ; Parhizkar M; Goyanes A; Basit AW
    Trends Pharmacol Sci; 2023 Jun; 44(6):379-393. PubMed ID: 37100732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Printing Methods in the Production of Orodispersible Films.
    Gupta MS; Kumar TP; Davidson R; Kuppu GR; Pathak K; Gowda DV
    AAPS PharmSciTech; 2021 Apr; 22(3):129. PubMed ID: 33835297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fracture resistance and 2-body wear of 3-dimensional-printed occlusal devices.
    Lutz AM; Hampe R; Roos M; Lümkemann N; Eichberger M; Stawarczyk B
    J Prosthet Dent; 2019 Jan; 121(1):166-172. PubMed ID: 30647000
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D Printed Bioelectrodes for Enzymatic Biofuel Cell: Simple, Rapid, Optimized and Enhanced Approach.
    Rewatkar P; Goel S
    IEEE Trans Nanobioscience; 2020 Jan; 19(1):4-10. PubMed ID: 31536011
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 4D-printed needle panel meters coupled with enzymatic derivatization for reading urea and glucose concentrations in biological samples.
    Wu CY; Su YT; Su CK
    Biosens Bioelectron; 2023 Oct; 237():115500. PubMed ID: 37390641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inkjet Printing and 3D Printing Strategies for Biosensing, Analytical, and Diagnostic Applications.
    Zub K; Hoeppener S; Schubert US
    Adv Mater; 2022 Aug; 34(31):e2105015. PubMed ID: 35338719
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The potential of 3D printing in facilitating carbon neutrality.
    Wang D; Zhang T; Guo X; Ling D; Hu L; Jiang G
    J Environ Sci (China); 2023 Aug; 130():85-91. PubMed ID: 37032045
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Progress in 3D Printing of Carbon Materials for Energy-Related Applications.
    Fu K; Yao Y; Dai J; Hu L
    Adv Mater; 2017 Mar; 29(9):. PubMed ID: 27982475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.