BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 33863433)

  • 21. Has contemporary climate change played a role in population declines of the lizard Ctenophorus decresii from semi-arid Australia?
    Walker S; Stuart-Fox D; Kearney MR
    J Therm Biol; 2015 Dec; 54():66-77. PubMed ID: 26615728
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insular geckos provide experimental evidence on refuge selection priorities by ectotherms.
    Pereira JJ; Lopes EP; Carretero MÁ; Vasconcelos R
    Behav Processes; 2019 Jul; 164():260-267. PubMed ID: 30910664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seasonal shifts in the thermal biology of the lizard Liolaemus tandiliensis (Squamata, Liolaemidae).
    Stellatelli OA; Villalba A; Block C; Vega LE; Dajil JE; Cruz FB
    J Therm Biol; 2018 Apr; 73():61-70. PubMed ID: 29549992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Are viviparous lizards more vulnerable to climate warming because they have evolved reduced body temperature and heat tolerance?
    Wang Z; Ma L; Shao M; Ji X
    Oecologia; 2017 Dec; 185(4):573-582. PubMed ID: 29018950
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diminishing returns limit energetic costs of climate change.
    Levy O; Borchert JD; Rusch TW; Buckley LB; Angilletta MJ
    Ecology; 2017 May; 98(5):1217-1228. PubMed ID: 28328067
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Warmer isn't always better: Performance eurythermy in a cold-climate gecko.
    Weeks DM; Espinoza RE
    J Exp Zool A Ecol Integr Physiol; 2020 Apr; 333(4):205-213. PubMed ID: 32017461
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seasonal and elevational variation in thermal ecology of the crevice-dwelling knob-scaled lizard Xenosaurus fractus from central-eastern Mexico.
    Cardona-Botero VE; Lara-Reséndiz RA; Woolrich-Piña GA; Pineda E; Lira-Noriega A; Gadsden H
    J Therm Biol; 2023 Feb; 112():103432. PubMed ID: 36796888
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Total lactate dehydrogenase activity of tail muscle is not cold-adapted in nocturnal lizards from cool-temperate habitats.
    Hare KM; Miller JH; Clark AG; Daugherty CH
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Dec; 142(4):438-44. PubMed ID: 16242367
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Climate warming drives a temperate-zone lizard to its upper thermal limits, restricting activity, and increasing energetic costs.
    Doucette LI; Duncan RP; Osborne WS; Evans M; Georges A; Gruber B; Sarre SD
    Sci Rep; 2023 Jun; 13(1):9603. PubMed ID: 37311881
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Would behavioral thermoregulation enable pregnant viviparous tropical lizards to cope with a warmer world?
    López-Alcaide S; Nakamura M; Smith EN; Martínez-Meyer E
    Integr Zool; 2017 Sep; 12(5):379-395. PubMed ID: 28058803
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cool shade and not-so-cool shade: How habitat loss may accelerate thermal stress under current and future climate.
    Stark G; Ma L; Zeng ZG; Du WG; Levy O
    Glob Chang Biol; 2023 Nov; 29(22):6201-6216. PubMed ID: 37280748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal physiology of three sympatric and syntopic Liolaemidae lizards in cold and arid environments of Patagonia (Argentina).
    Duran F; Kubisch EL; Boretto JM
    J Comp Physiol B; 2018 Jan; 188(1):141-152. PubMed ID: 28726024
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina.
    Kubisch EL; Fernández JB; Ibargüengoytía NR
    J Comp Physiol B; 2016 Feb; 186(2):243-53. PubMed ID: 26679700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change.
    Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS
    J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604
    [TBL] [Abstract][Full Text] [Related]  

  • 35. State-dependent movement choices of desert lizards: The role of behavioural thermoregulation during summer and winter.
    Stark G; Ma L; Zeng ZG; Du WG; Levy O
    J Therm Biol; 2024 Apr; 121():103841. PubMed ID: 38552446
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxygen supply did not affect how lizards responded to thermal stress.
    Camacho A; Vandenbrooks JM; Riley A; Telemeco RS; Angilletta MJ
    Integr Zool; 2018 Jul; 13(4):428-436. PubMed ID: 29316302
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low cost of locomotion in lizards that are active at low temperatures.
    Hare KM; Pledger S; Thompson MB; Miller JH; Daugherty CH
    Physiol Biochem Zool; 2007; 80(1):46-58. PubMed ID: 17160879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. One solution for two challenges: the lizard Microlophus atacamensis avoids overheating by foraging in intertidal shores.
    Sepúlveda M; Sabat P; Porter WP; Fariña JM
    PLoS One; 2014; 9(5):e97735. PubMed ID: 24839969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Season-sex interaction induces changes in the ecophysiological traits of a lizard in a high altitude cold desert, Puna region.
    Gómez Alés R; Acosta JC; Astudillo V; Córdoba M
    J Therm Biol; 2022 Jan; 103():103152. PubMed ID: 35027202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intense nocturnal warming alters growth strategies, colouration and parasite load in a diurnal lizard.
    Rutschmann A; Dupoué A; Miles DB; Megía-Palma R; Lauden C; Richard M; Badiane A; Rozen-Rechels D; Brevet M; Blaimont P; Meylan S; Clobert J; Le Galliard JF
    J Anim Ecol; 2021 Aug; 90(8):1864-1877. PubMed ID: 33884616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.