BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 33863444)

  • 1. Rearing temperature conditions (constant vs. thermocycle) affect daily rhythms of thermal tolerance and sensing in zebrafish.
    de Alba G; López-Olmeda JF; Sánchez-Vázquez FJ
    J Therm Biol; 2021 Apr; 97():102880. PubMed ID: 33863444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of daily thermocycles on hatching rhythms, larval performance and sex differentiation of zebrafish.
    Villamizar N; Ribas L; Piferrer F; Vera LM; Sánchez-Vázquez FJ
    PLoS One; 2012; 7(12):e52153. PubMed ID: 23284912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined blue light and daily thermocycles enhance zebrafish growth and development.
    de Alba G; Carrillo S; Sánchez-Vázquez FJ; López-Olmeda JF
    J Exp Zool A Ecol Integr Physiol; 2022 Jun; 337(5):501-515. PubMed ID: 35189038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal stress in Danio rerio: a link between temperature, light, thermo-TRP channels, and clock genes.
    Jerônimo R; Moraes MN; de Assis LVM; Ramos BC; Rocha T; Castrucci AML
    J Therm Biol; 2017 Aug; 68(Pt A):128-138. PubMed ID: 28689714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian rhythms of embryonic development and hatching in fish: a comparative study of zebrafish (diurnal), Senegalese sole (nocturnal), and Somalian cavefish (blind).
    Villamizar N; Blanco-Vives B; Oliveira C; Dinis MT; Di Rosa V; Negrini P; Bertolucci C; Sánchez-Vázquez FJ
    Chronobiol Int; 2013 Aug; 30(7):889-900. PubMed ID: 23697903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined effects of rearing temperature regime (thermocycle vs. constant temperature) during early development and thermal treatment on Nile tilapia (Oreochromis niloticus) sex differentiation.
    de Alba G; Cámara-Ruiz M; Esteban MÁ; Sánchez-Vázquez FJ; López-Olmeda JF
    J Therm Biol; 2023 Jul; 115():103596. PubMed ID: 37327616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light and temperature cycles as zeitgebers of zebrafish (Danio rerio) circadian activity rhythms.
    López-Olmeda JF; Madrid JA; Sánchez-Vázquez FJ
    Chronobiol Int; 2006; 23(3):537-50. PubMed ID: 16753940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upregulation of heat-shock proteins in larvae, but not adults, of the flesh fly during hot summer days.
    Harada E; Goto SG
    Cell Stress Chaperones; 2017 Nov; 22(6):823-831. PubMed ID: 28597340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hsp70s transcription-translation relationship depends on the heat shock temperature in zebrafish.
    Mottola G; Nikinmaa M; Anttila K
    Comp Biochem Physiol A Mol Integr Physiol; 2020 Feb; 240():110629. PubMed ID: 31790806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential expression of heat shock proteins and antioxidant enzymes in response to temperature, starvation, and parasitism in the Carob moth larvae, Ectomyelois ceratoniae (Lepidoptera: Pyralidae).
    Farahani S; Bandani AR; Alizadeh H; Goldansaz SH; Whyard S
    PLoS One; 2020; 15(1):e0228104. PubMed ID: 31995629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zebrafish temperature selection and synchronization of locomotor activity circadian rhythm to ahemeral cycles of light and temperature.
    López-Olmeda JF; Sánchez-Vázquez FJ
    Chronobiol Int; 2009 Feb; 26(2):200-18. PubMed ID: 19212837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basal and dynamics mRNA expression of muscular HSP108, HSP90, HSF-1 and HSF-2 in thermally manipulated broilers during embryogenesis.
    Al-Zghoul MB; El-Bahr SM
    BMC Vet Res; 2019 Mar; 15(1):83. PubMed ID: 30849975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple, economical heat-shock devices for zebrafish housing racks.
    Duszynski RJ; Topczewski J; LeClair EE
    Zebrafish; 2011 Dec; 8(4):211-9. PubMed ID: 21913856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus.
    Fangue NA; Hofmeister M; Schulte PM
    J Exp Biol; 2006 Aug; 209(Pt 15):2859-72. PubMed ID: 16857869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of heat shock proteins and heat shock factor expression during heat stress in daughter workers in pre-heat-treated (rapid heat hardening) Apis mellifera mother queens.
    Al-Ghzawi AAA; Al-Zghoul MB; Zaitoun S; Al-Omary IM; Alahmad NA
    J Therm Biol; 2022 Feb; 104():103194. PubMed ID: 35180971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of Hsp70 expression and thermotolerance in adults and larvae of three Drosophila species.
    Krebs RA
    Cell Stress Chaperones; 1999 Dec; 4(4):243-9. PubMed ID: 10590838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the heat shock response in mature zebrafish (Danio rerio).
    Murtha JM; Keller ET
    Exp Gerontol; 2003 Jun; 38(6):683-91. PubMed ID: 12814804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feeding entrainment of food-anticipatory activity and per1 expression in the brain and liver of zebrafish under different lighting and feeding conditions.
    López-Olmeda JF; Tartaglione EV; de la Iglesia HO; Sánchez-Vázquez FJ
    Chronobiol Int; 2010 Aug; 27(7):1380-400. PubMed ID: 20795882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of heat shock proteins (HSPs) in Aedes aegypti (L) and Aedes albopictus (Skuse) (Diptera: Culicidae) larvae in response to thermal stress.
    Sivan A; Shriram AN; Muruganandam N; Thamizhmani R
    Acta Trop; 2017 Mar; 167():121-127. PubMed ID: 28024869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms underlying plasticity in a thermally varying environment.
    Salachan PV; Sørensen JG
    Mol Ecol; 2022 Jun; 31(11):3174-3191. PubMed ID: 35397190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.