These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33863602)

  • 21. Physiological and biochemical changes associated with acute experimental dehydration in the desert adapted mouse,
    Kordonowy L; Lombardo KD; Green HL; Dawson MD; Bolton EA; LaCourse S; MacManes MD
    Physiol Rep; 2017 Mar; 5(6):. PubMed ID: 28330954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [ADAPTATION OF THE PERSON MOVED INTO A DESERT CLIMATE. SOME PHYSIOLOGICAL ASPECTS].
    MICHELET J
    Arch Mal Prof; 1964 Mar; 25():127-32. PubMed ID: 14136463
    [No Abstract]   [Full Text] [Related]  

  • 23. [Food habits and organic adaptation in desert zones].
    HENANE R
    Rev Corps Sante Armees Terre Mer Air; 1963 Feb; 4():33-54. PubMed ID: 13953691
    [No Abstract]   [Full Text] [Related]  

  • 24. Thermal and water relations of desert beetles.
    Cloudsley-Thompson JL
    Naturwissenschaften; 2001 Nov; 88(11):447-60. PubMed ID: 11771473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water balance in desert Drosophila: lessons from non-charismatic microfauna.
    Gibbs AG
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Nov; 133(3):781-9. PubMed ID: 12443934
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Digest: On the contribution of phenotypic plasticity to adaptation in desert environments.
    Narayan VP
    Evolution; 2021 Jun; 75(6):1585-1586. PubMed ID: 34002385
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A genomics approach reveals insights into the importance of gene losses for mammalian adaptations.
    Sharma V; Hecker N; Roscito JG; Foerster L; Langer BE; Hiller M
    Nat Commun; 2018 Mar; 9(1):1215. PubMed ID: 29572503
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gene expression plasticity and desert adaptation in house mice.
    Bittner NKJ; Mack KL; Nachman MW
    Evolution; 2021 Jun; 75(6):1477-1491. PubMed ID: 33458812
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Survival in desert: Extreme water adaptations and bioinspired structural designs.
    He G; Zhang C; Dong Z
    iScience; 2023 Jan; 26(1):105819. PubMed ID: 36636349
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phenotypic and genomic adaptations to the extremely high elevation in plateau zokor (Myospalax baileyi).
    Zhang T; Chen J; Zhang J; Guo YT; Zhou X; Li MW; Zheng ZZ; Zhang TZ; Murphy RW; Nevo E; Shi P
    Mol Ecol; 2021 Nov; 30(22):5765-5779. PubMed ID: 34510615
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-Wide Analysis of Nubian Ibex Reveals Candidate Positively Selected Genes That Contribute to Its Adaptation to the Desert Environment.
    Chebii VJ; Oyola SO; Kotze A; Domelevo Entfellner JB; Musembi Mutuku J; Agaba M
    Animals (Basel); 2020 Nov; 10(11):. PubMed ID: 33266380
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolites Facilitating Adaptation of Desert Cyanobacteria to Extremely Arid Environments.
    Dabravolski SA; Isayenkov SV
    Plants (Basel); 2022 Nov; 11(23):. PubMed ID: 36501264
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolutionary Genetics of Hypoxia and Cold Tolerance in Mammals.
    Zhu K; Ge D; Wen Z; Xia L; Yang Q
    J Mol Evol; 2018 Dec; 86(9):618-634. PubMed ID: 30327830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genomic Investigation of Desert
    Wen Y; Zhang G; Bahadur A; Xu Y; Liu Y; Tian M; Ding W; Chen T; Zhang W; Liu G
    Microorganisms; 2022 Dec; 10(12):. PubMed ID: 36557661
    [TBL] [Abstract][Full Text] [Related]  

  • 35. What distinguishes cyanobacteria able to revive after desiccation from those that cannot: the genome aspect.
    Murik O; Oren N; Shotland Y; Raanan H; Treves H; Kedem I; Keren N; Hagemann M; Pade N; Kaplan A
    Environ Microbiol; 2017 Feb; 19(2):535-550. PubMed ID: 27501380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lipid accumulation in prokaryotic microorganisms from arid habitats.
    Hauschild P; Röttig A; Madkour MH; Al-Ansari AM; Almakishah NH; Steinbüchel A
    Appl Microbiol Biotechnol; 2017 Mar; 101(6):2203-2216. PubMed ID: 28175949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. "Metabolic switch" for desert survival.
    Merkt JR; Taylor CR
    Proc Natl Acad Sci U S A; 1994 Dec; 91(25):12313-6. PubMed ID: 7991624
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Parasite adaptation to extreme conditions in a desert environment.
    Tinsley RC
    Parasitology; 1999; 119 Suppl():S31-56. PubMed ID: 11254147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome Resequencing Identifies Unique Adaptations of Tibetan Chickens to Hypoxia and High-Dose Ultraviolet Radiation in High-Altitude Environments.
    Zhang Q; Gou W; Wang X; Zhang Y; Ma J; Zhang H; Zhang Y; Zhang H
    Genome Biol Evol; 2016 Feb; 8(3):765-76. PubMed ID: 26907498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptomic response to heat stress among ecologically divergent populations of redband trout.
    Narum SR; Campbell NR
    BMC Genomics; 2015 Feb; 16(1):103. PubMed ID: 25765850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.