BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 33863707)

  • 1. Pyruvate Production by Escherichia coli by Use of Pyruvate Dehydrogenase Variants.
    Moxley WC; Eiteman MA
    Appl Environ Microbiol; 2021 Jun; 87(13):e0048721. PubMed ID: 33863707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of glycerol to pyruvate by Escherichia coli using acetate- and acetate/glucose-limited fed-batch processes.
    Zhu Y; Eiteman MA; Lee SA; Altman E
    J Ind Microbiol Biotechnol; 2010 Mar; 37(3):307-12. PubMed ID: 20012884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic flux control at the pyruvate node in an anaerobic Escherichia coli strain with an active pyruvate dehydrogenase.
    Wang Q; Ou MS; Kim Y; Ingram LO; Shanmugam KT
    Appl Environ Microbiol; 2010 Apr; 76(7):2107-14. PubMed ID: 20118372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Citrate synthase variants improve yield of acetyl-CoA derived 3-hydroxybutyrate in Escherichia coli.
    Rajpurohit H; Eiteman MA
    Microb Cell Fact; 2024 Jun; 23(1):173. PubMed ID: 38867236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High glycolytic flux improves pyruvate production by a metabolically engineered Escherichia coli strain.
    Zhu Y; Eiteman MA; Altman R; Altman E
    Appl Environ Microbiol; 2008 Nov; 74(21):6649-55. PubMed ID: 18806005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient L-lactate production using engineered Escherichia coli with dissimilar temperature optima for L-lactate formation and cell growth.
    Niu D; Tian K; Prior BA; Wang M; Wang Z; Lu F; Singh S
    Microb Cell Fact; 2014 May; 13():78. PubMed ID: 24884499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eliminating acetate formation improves citramalate production by metabolically engineered Escherichia coli.
    Parimi NS; Durie IA; Wu X; Niyas AMM; Eiteman MA
    Microb Cell Fact; 2017 Jun; 16(1):114. PubMed ID: 28637476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyruvate oxidase contributes to the aerobic growth efficiency of Escherichia coli.
    Abdel-Hamid AM; Attwood MM; Guest JR
    Microbiology (Reading); 2001 Jun; 147(Pt 6):1483-1498. PubMed ID: 11390679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of lpdA gene knockout on the metabolism in Escherichia coli based on enzyme activities, intracellular metabolite concentrations and metabolic flux analysis by 13C-labeling experiments.
    Li M; Ho PY; Yao S; Shimizu K
    J Biotechnol; 2006 Mar; 122(2):254-66. PubMed ID: 16310273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic metabolic bypass for a metabolic toggle switch enhances acetyl-CoA supply for isopropanol production by Escherichia coli.
    Soma Y; Yamaji T; Matsuda F; Hanai T
    J Biosci Bioeng; 2017 May; 123(5):625-633. PubMed ID: 28214243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulating pyruvate to acetyl-CoA conversion in Escherichia coli for anaerobic succinate biosynthesis from glucose with the yield close to the stoichiometric maximum.
    Skorokhodova AY; Morzhakova AA; Gulevich AY; Debabov VG
    J Biotechnol; 2015 Nov; 214():33-42. PubMed ID: 26362413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of pyruvate producing strain with intact pyruvate dehydrogenase and genome-wide transcription analysis.
    Yang M; Zhang X
    World J Microbiol Biotechnol; 2017 Mar; 33(3):59. PubMed ID: 28243982
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Moxley WC; Brown RE; Eiteman MA
    Eng Life Sci; 2023 Mar; 23(3):e2200054. PubMed ID: 36874610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient bio-production of citramalate using an engineered Escherichia coli strain.
    Webb JP; Arnold SA; Baxter S; Hall SJ; Eastham G; Stephens G
    Microbiology (Reading); 2018 Feb; 164(2):133-141. PubMed ID: 29231156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyruvate dehydrogenase complex regulator (PdhR) gene deletion boosts glucose metabolism in Escherichia coli under oxygen-limited culture conditions.
    Maeda S; Shimizu K; Kihira C; Iwabu Y; Kato R; Sugimoto M; Fukiya S; Wada M; Yokota A
    J Biosci Bioeng; 2017 Apr; 123(4):437-443. PubMed ID: 28007420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic flux analysis of Escherichia coli creB and arcA mutants reveals shared control of carbon catabolism under microaerobic growth conditions.
    Nikel PI; Zhu J; San KY; Méndez BS; Bennett GN
    J Bacteriol; 2009 Sep; 191(17):5538-48. PubMed ID: 19561129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae.
    Kozak BU; van Rossum HM; Luttik MA; Akeroyd M; Benjamin KR; Wu L; de Vries S; Daran JM; Pronk JT; van Maris AJ
    mBio; 2014 Oct; 5(5):e01696-14. PubMed ID: 25336454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of feed and intracellular pyruvate levels on the redistribution of metabolic fluxes in Escherichia coli.
    Yang YT; Bennett GN; San KY
    Metab Eng; 2001 Apr; 3(2):115-23. PubMed ID: 11289788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of d-lactate using a pyruvate-producing Escherichia coli strain.
    Akita H; Nakashima N; Hoshino T
    Biosci Biotechnol Biochem; 2017 Jul; 81(7):1452-1455. PubMed ID: 28463593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme I facilitates reverse flux from pyruvate to phosphoenolpyruvate in Escherichia coli.
    Long CP; Au J; Sandoval NR; Gebreselassie NA; Antoniewicz MR
    Nat Commun; 2017 Jan; 8():14316. PubMed ID: 28128209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.