These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33863987)

  • 1. Leucyl-tRNA synthetase deficiency systemically induces excessive autophagy in zebrafish.
    Inoue M; Miyahara H; Shiraishi H; Shimizu N; Tsumori M; Kiyota K; Maeda M; Umeda R; Ishitani T; Hanada R; Ihara K; Hanada T
    Sci Rep; 2021 Apr; 11(1):8392. PubMed ID: 33863987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of Leucyl-tRNA synthetase b leads to ILFS1-like symptoms in zebrafish.
    Wang Z; Song J; Luo L; Ma J
    Biochem Biophys Res Commun; 2018 Oct; 505(2):378-384. PubMed ID: 30262142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biallelic variants in LARS1 induce steatosis in developing zebrafish liver via enhanced autophagy.
    Inoue M; Sebastian WA; Sonoda S; Miyahara H; Shimizu N; Shiraishi H; Maeda M; Yanagi K; Kaname T; Hanada R; Hanada T; Ihara K
    Orphanet J Rare Dis; 2024 May; 19(1):219. PubMed ID: 38807157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Severe course with lethal hepatocellular injury and skeletal muscular dysgenesis in a neonate with infantile liver failure syndrome type 1 caused by novel LARS1 mutations.
    Hirata K; Okamoto N; Ichikawa C; Inoue S; Nozaki M; Banno K; Takenouchi T; Suzuki H; Kosaki K
    Am J Med Genet A; 2021 Mar; 185(3):866-870. PubMed ID: 33300650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a mutation in LARS as a novel cause of infantile hepatopathy.
    Casey JP; McGettigan P; Lynam-Lennon N; McDermott M; Regan R; Conroy J; Bourke B; O'Sullivan J; Crushell E; Lynch S; Ennis S
    Mol Genet Metab; 2012 Jul; 106(3):351-8. PubMed ID: 22607940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway.
    Han JM; Jeong SJ; Park MC; Kim G; Kwon NH; Kim HK; Ha SH; Ryu SH; Kim S
    Cell; 2012 Apr; 149(2):410-24. PubMed ID: 22424946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Clinical feature and molecular diagnostic analysis of the first non-caucasian child with infantile liver failure syndrome type 1].
    Lin WX; Zheng QQ; Guo L; Cheng Y; Song YZ
    Zhongguo Dang Dai Er Ke Za Zhi; 2017 Aug; 19(8):913-920. PubMed ID: 28774368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leucine-induced localization of Leucyl-tRNA synthetase in lysosome membrane.
    Choi H; Son JB; Kang J; Kwon J; Kim JH; Jung M; Kim SK; Kim S; Mun JY
    Biochem Biophys Res Commun; 2017 Nov; 493(2):1129-1135. PubMed ID: 28882589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Severe Neonatal Manifestations of Infantile Liver Failure Syndrome Type 1 Caused by Cytosolic Leucine-tRNA Synthetase Deficiency.
    Peroutka C; Salas J; Britton J; Bishop J; Kratz L; Gilmore MM; Fahrner JA; Golden WC; Wang T
    JIMD Rep; 2019; 45():71-76. PubMed ID: 30349989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leucyl-tRNA synthetase is required for the myogenic differentiation of C2C12 myoblasts, but not for hypertrophy or metabolic alteration of myotubes.
    Sato Y; Sato Y; Suzuki R; Obeng K; Yoshizawa F
    Exp Cell Res; 2018 Mar; 364(2):184-190. PubMed ID: 29425714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leucine-sensing mechanism of leucyl-tRNA synthetase 1 for mTORC1 activation.
    Kim S; Yoon I; Son J; Park J; Kim K; Lee JH; Park SY; Kang BS; Han JM; Hwang KY; Kim S
    Cell Rep; 2021 Apr; 35(4):109031. PubMed ID: 33910001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical and genetic characterisation of infantile liver failure syndrome type 1, due to recessive mutations in LARS.
    Casey JP; Slattery S; Cotter M; Monavari AA; Knerr I; Hughes J; Treacy EP; Devaney D; McDermott M; Laffan E; Wong D; Lynch SA; Bourke B; Crushell E
    J Inherit Metab Dis; 2015 Nov; 38(6):1085-92. PubMed ID: 25917789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. O-GlcNAc modification of leucyl-tRNA synthetase 1 integrates leucine and glucose availability to regulate mTORC1 and the metabolic fate of leucine.
    Kim K; Yoo HC; Kim BG; Kim S; Sung Y; Yoon I; Yu YC; Park SJ; Kim JH; Myung K; Hwang KY; Kim S; Han JM
    Nat Commun; 2022 May; 13(1):2904. PubMed ID: 35614056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordination of the leucine-sensing Rag GTPase cycle by leucyl-tRNA synthetase in the mTORC1 signaling pathway.
    Lee M; Kim JH; Yoon I; Lee C; Fallahi Sichani M; Kang JS; Kang J; Guo M; Lee KY; Han G; Kim S; Han JM
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):E5279-E5288. PubMed ID: 29784813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LRRK2 impairs autophagy by mediating phosphorylation of leucyl-tRNA synthetase.
    Ho DH; Kim H; Nam D; Sim H; Kim J; Kim HG; Son I; Seol W
    Cell Biochem Funct; 2018 Dec; 36(8):431-442. PubMed ID: 30411383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of leucine-dependent mTORC1 pathway through chemical intervention of leucyl-tRNA synthetase and RagD interaction.
    Kim JH; Lee C; Lee M; Wang H; Kim K; Park SJ; Yoon I; Jang J; Zhao H; Kim HK; Kwon NH; Jeong SJ; Yoo HC; Kim JH; Yang JS; Lee MY; Lee CW; Yun J; Oh SJ; Kang JS; Martinis SA; Hwang KY; Guo M; Han G; Han JM; Kim S
    Nat Commun; 2017 Sep; 8(1):732. PubMed ID: 28963468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of revertants of the mammalian temperature sensitive leucyl-tRNA synthetase mutant tsHl.
    Molnar SJ; Thompson LH; Lofgren DJ; Rauth AM
    J Cell Physiol; 1979 Feb; 98(2):327-39. PubMed ID: 422661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-activity relationship of leucyladenylate sulfamate analogues as leucyl-tRNA synthetase (LRS)-targeting inhibitors of Mammalian target of rapamycin complex 1 (mTORC1).
    Yoon S; Kim SE; Kim JH; Yoon I; Tran PT; Ann J; Kim C; Byun WS; Lee S; Kim S; Lee J; Lee J
    Bioorg Med Chem; 2019 Mar; 27(6):1099-1109. PubMed ID: 30755350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane association of leucyl-tRNA synthetase during leucine starvation in Escherichia coli.
    Williamson RM
    Biochem Biophys Res Commun; 1993 Feb; 190(3):794-800. PubMed ID: 8439330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose-dependent control of leucine metabolism by leucyl-tRNA synthetase 1.
    Yoon I; Nam M; Kim HK; Moon HS; Kim S; Jang J; Song JA; Jeong SJ; Kim SB; Cho S; Kim Y; Lee J; Yang WS; Yoo HC; Kim K; Kim MS; Yang A; Cho K; Park HS; Hwang GS; Hwang KY; Han JM; Kim JH; Kim S
    Science; 2020 Jan; 367(6474):205-210. PubMed ID: 31780625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.