BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33864018)

  • 1. Study on surface enhanced Raman scattering of Au and Au@Al
    Yan BX; Zhu YY; Wei Y; Pei H
    Sci Rep; 2021 Apr; 11(1):8391. PubMed ID: 33864018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The performance of surface enhanced Raman scattering and spatial resolution with triangular plate dimer from ultra-ultraviolet to near-infrared range.
    Wei Y; Pei H; Yan B; Zhu Y
    J Phys Condens Matter; 2021 Nov; 34(4):. PubMed ID: 34670211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocavity-in-Multiple Nanogap Plasmonic Coupling Effects from Vertical Sandwich-Like Au@Al
    Yang C; Chen Y; Liu D; Chen C; Wang J; Fan Y; Huang S; Lei W
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8317-8323. PubMed ID: 29441776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of Various Types of Nanorods as Sensitive Surface-Enhanced Raman Scattering Substrates.
    Kuo HF; Huang YJ; Chen YT
    IEEE Trans Nanobioscience; 2015 Sep; 14(6):581-90. PubMed ID: 26011891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface enhanced Raman scattering of pyridine adsorbed on Au@Pd core/shell nanoparticles.
    Yang Z; Li Y; Li Z; Wu D; Kang J; Xu H; Sun M
    J Chem Phys; 2009 Jun; 130(23):234705. PubMed ID: 19548748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localized surface plasmon resonance and surface enhanced Raman scattering responses of Au@Ag core-shell nanorods with different thickness of Ag shell.
    Ma Y; Zhou J; Zou W; Jia Z; Petti L; Mormile P
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4245-50. PubMed ID: 24738378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Au@Ag core-shell nanocubes: epitaxial growth synthesis and surface-enhanced Raman scattering performance.
    Liu Y; Zhou J; Wang B; Jiang T; Ho HP; Petti L; Mormile P
    Phys Chem Chem Phys; 2015 Mar; 17(10):6819-26. PubMed ID: 25670345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrathin Oxide Layer-Wrapped Noble Metal Nanoparticles via Colloidal Electrostatic Self-Assembly for Efficient and Reusable Surface Enhanced Raman Scattering Substrates.
    Bao H; Zhang H; Zhou L; Liu G; Li Y; Cai W
    Langmuir; 2017 Nov; 33(45):12934-12942. PubMed ID: 29061051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Investigation on the Use of Au@SiO
    Eldridge BK; Gomrok S; Barr JW; Chaffin EA; Fielding L; Sachs C; Stickels K; Williams P; Wang Y
    Nanomaterials (Basel); 2023 Nov; 13(21):. PubMed ID: 37947737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical Field Enhancement in Au Nanoparticle-Decorated Nanorod Arrays Prepared by Femtosecond Laser and Their Tunable Surface-Enhanced Raman Scattering Applications.
    Cao W; Jiang L; Hu J; Wang A; Li X; Lu Y
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1297-1305. PubMed ID: 29256245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement and quenching of plasmon-enhanced spectroscopy of single molecule confined in metallic nanoparticle dimers.
    Pei H; Zhao J; Peng W; Dai Q; Wei Y
    Nanotechnology; 2023 Oct; 35(1):. PubMed ID: 37769644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy.
    Uzayisenga V; Lin XD; Li LM; Anema JR; Yang ZL; Huang YF; Lin HX; Li SB; Li JF; Tian ZQ
    Langmuir; 2012 Jun; 28(24):9140-6. PubMed ID: 22506587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape Effect of Surface-Enhanced Raman Scattering-Active-Substrate-Based Nanoparticles on Local Electric Field for Biochemical Sensing Application.
    Lee ET; Cheng HW; Yang JY; Li Y
    J Nanosci Nanotechnol; 2017 Feb; 17(2):871-77. PubMed ID: 29668221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-difference time-domain studies of the optical properties of nanoshell dimers.
    Oubre C; Nordlander P
    J Phys Chem B; 2005 May; 109(20):10042-51. PubMed ID: 16852215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong confinement of gap modes induced by the film modified electric and magnetic modes in dielectric nanoparticle dimers.
    Shi J; Ju L; Zhang X; Huang Y; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 266():120465. PubMed ID: 34637984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wafer-scale double-layer stacked Au/Al2O3@Au nanosphere structure with tunable nanospacing for surface-enhanced Raman scattering.
    Hu Z; Liu Z; Li L; Quan B; Li Y; Li J; Gu C
    Small; 2014 Oct; 10(19):3933-42. PubMed ID: 24995658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of an Au atom and dimer on a thin θ-Al
    Hsia CL; Wang JH; Luo MF
    RSC Adv; 2018 Jan; 8(5):2642-2652. PubMed ID: 35541469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-enhanced Raman scattering by colloidal CdSe nanocrystal submonolayers fabricated by the Langmuir-Blodgett technique.
    Milekhin AG; Sveshnikova LL; Duda TA; Rodyakina EE; Dzhagan VM; Gordan OD; Veber SL; Himcinschi C; Latyshev AV; Zahn DR
    Beilstein J Nanotechnol; 2015; 6():2388-95. PubMed ID: 26734529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing.
    Wang C; Wu X; Dong P; Chen J; Xiao R
    Biosens Bioelectron; 2016 Dec; 86():944-950. PubMed ID: 27498319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.