BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33864072)

  • 1. Genomic prediction of hybrid crops allows disentangling dominance and epistasis.
    González-Diéguez D; Legarra A; Charcosset A; Moreau L; Lehermeier C; Teyssèdre S; Vitezica ZG
    Genetics; 2021 May; 218(1):. PubMed ID: 33864072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of additive, epistatic, and dominance effects using models accounting for incomplete inbreeding in parental lines of hybrid rye and sugar beet.
    Kristensen PS; Sarup P; Fé D; Orabi J; Snell P; Ripa L; Mohlfeld M; Chu TT; Herrström J; Jahoor A; Jensen J
    Front Plant Sci; 2023; 14():1193433. PubMed ID: 38162304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significance of linkage disequilibrium and epistasis on genetic variances in noninbred and inbred populations.
    Viana JMS; Garcia AAF
    BMC Genomics; 2022 Apr; 23(1):286. PubMed ID: 35397494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of recombination in the parent populations on the means and combining ability variances in hybrid populations of maize ( Zea mays L.).
    Melchinger AE; Geiger HH; Utz HF; Schnell FW
    Theor Appl Genet; 2003 Jan; 106(2):332-40. PubMed ID: 12582860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dominance and epistatic genetic variances for litter size in pigs using genomic models.
    Vitezica ZG; Reverter A; Herring W; Legarra A
    Genet Sel Evol; 2018 Dec; 50(1):71. PubMed ID: 30577727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orthogonal Estimates of Variances for Additive, Dominance, and Epistatic Effects in Populations.
    Vitezica ZG; Legarra A; Toro MA; Varona L
    Genetics; 2017 Jul; 206(3):1297-1307. PubMed ID: 28522540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize.
    Technow F; Schrag TA; Schipprack W; Bauer E; Simianer H; Melchinger AE
    Genetics; 2014 Aug; 197(4):1343-55. PubMed ID: 24850820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving genomic predictions with inbreeding and nonadditive effects in two admixed maize hybrid populations in single and multienvironment contexts.
    Roth M; Beugnot A; Mary-Huard T; Moreau L; Charcosset A; Fiévet JB
    Genetics; 2022 Apr; 220(4):. PubMed ID: 35150258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reciprocal Genetics: Identifying QTL for General and Specific Combining Abilities in Hybrids Between Multiparental Populations from Two Maize (
    Giraud H; Bauland C; Falque M; Madur D; Combes V; Jamin P; Monteil C; Laborde J; Palaffre C; Gaillard A; Blanchard P; Charcosset A; Moreau L
    Genetics; 2017 Nov; 207(3):1167-1180. PubMed ID: 28971957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic prediction of hybrid performance in maize with models incorporating dominance and population specific marker effects.
    Technow F; Riedelsheimer C; Schrag TA; Melchinger AE
    Theor Appl Genet; 2012 Oct; 125(6):1181-94. PubMed ID: 22733443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phantom Epistasis in Genomic Selection: On the Predictive Ability of Epistatic Models.
    Schrauf MF; Martini JWR; Simianer H; de Los Campos G; Cantet R; Freudenthal J; Korte A; Munilla S
    G3 (Bethesda); 2020 Sep; 10(9):3137-3145. PubMed ID: 32709618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of genetic drift on variance components under a general model of epistasis.
    Barton NH; Turelli M
    Evolution; 2004 Oct; 58(10):2111-32. PubMed ID: 15562679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of F2 Bulks in Training Sets for Genomic Prediction of Combining Ability and Hybrid Performance.
    Technow F
    G3 (Bethesda); 2019 May; 9(5):1557-1569. PubMed ID: 30862623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic dissection of heterosis using epistatic association mapping in a partial NCII mating design.
    Wen J; Zhao X; Wu G; Xiang D; Liu Q; Bu SH; Yi C; Song Q; Dunwell JM; Tu J; Zhang T; Zhang YM
    Sci Rep; 2015 Dec; 5():18376. PubMed ID: 26679476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic studies with preselected markers reveal dominance effects influencing growth traits in Eucalyptus nitens.
    Thumma BR; Joyce KR; Jacobs A
    G3 (Bethesda); 2022 Jan; 12(1):. PubMed ID: 34791210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic Prediction of Pumpkin Hybrid Performance.
    Wu PY; Tung CW; Lee CY; Liao CT
    Plant Genome; 2019 Jun; 12(2):. PubMed ID: 31290920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genotyping marker density and prediction models effects in long-term breeding schemes of cross-pollinated crops.
    DoVale JC; Carvalho HF; Sabadin F; Fritsche-Neto R
    Theor Appl Genet; 2022 Dec; 135(12):4523-4539. PubMed ID: 36261658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Portability of genomic predictions trained on sparse factorial designs across two maize silage breeding cycles.
    Lorenzi A; Bauland C; Pin S; Madur D; Combes V; Palaffre C; Guillaume C; Touzy G; Mary-Huard T; Charcosset A; Moreau L
    Theor Appl Genet; 2024 Mar; 137(3):75. PubMed ID: 38453705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of genomic prediction in advanced wheat breeding lines by including additive-by-additive epistasis.
    Raffo MA; Sarup P; Guo X; Liu H; Andersen JR; Orabi J; Jahoor A; Jensen J
    Theor Appl Genet; 2022 Mar; 135(3):965-978. PubMed ID: 34973112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epistasis in maize (Zea mays L.) : 2. Genetic effects in crosses among early flint and dent inbred lines determined by three methods.
    Melchinger AE; Geiger HH; Schnell FW
    Theor Appl Genet; 1986 Mar; 72(2):231-9. PubMed ID: 24247839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.