These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33864359)

  • 1. Rapid serum-free/suspension adaptation: Medium development using a definitive screening design for Chinese hamster ovary cells.
    Wu S; Rish AJ; Skomo A; Zhao Y; Drennen JK; Anderson CA
    Biotechnol Prog; 2021 Jul; 37(4):e3154. PubMed ID: 33864359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Serum-free medium for suspension culture of recombinant Chinese hamster ovary (11G-S) cells].
    Liu X; Liu H; Ye L; Li S; Wu B; Wang H; Xie J; Chen Z
    Sheng Wu Gong Cheng Xue Bao; 2010 Aug; 26(8):1116-22. PubMed ID: 21090117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable production of a human growth hormone antagonist from CHO cells adapted to serum-free suspension culture.
    Haldankar R; Kopchick JJ; Ridgway D
    Biotechnol Prog; 1999; 15(3):336-46. PubMed ID: 10356250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast hydrolysate as a low-cost additive to serum-free medium for the production of human thrombopoietin in suspension cultures of Chinese hamster ovary cells.
    Sung YH; Lim SW; Chung JY; Lee GM
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):527-36. PubMed ID: 12856163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetrahydrofolate increases suspension growth of dihydrofolate reductase-deficient chinese hamster ovary DG44 cells in chemically defined media.
    Kim BG; Park HW
    Biotechnol Prog; 2016 Nov; 32(6):1539-1546. PubMed ID: 27578320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of Interaction between Integrin and Actin Cytoskeleton in Suspension Adaptation of CHO cells.
    Walther CG; Whitfield R; James DC
    Appl Biochem Biotechnol; 2016 Apr; 178(7):1286-302. PubMed ID: 26679704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic changes in CHO cells after adaptation to suspension growth in protein-free medium analysed by a species-specific microarray.
    Shridhar S; Klanert G; Auer N; Hernandez-Lopez I; Kańduła MM; Hackl M; Grillari J; Stralis-Pavese N; Kreil DP; Borth N
    J Biotechnol; 2017 Sep; 257():13-21. PubMed ID: 28302587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation of Vero cells to suspension growth for rabies virus production in different serum free media.
    Rourou S; Ben Zakkour M; Kallel H
    Vaccine; 2019 Nov; 37(47):6987-6995. PubMed ID: 31201054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Peptone Supplementation in Different Culture Media on Growth, Metabolic Pathway and Productivity of CHO DG44 Cells; a New Insight into Amino Acid Profiles.
    Davami F; Eghbalpour F; Nematollahi L; Barkhordari F; Mahboudi F
    Iran Biomed J; 2015; 19(4):194-205. PubMed ID: 26232332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heparin promotes suspension adaptation process of CHO-TS28 cells by eliminating cell aggregation.
    Li L; Qin J; Feng Q; Tang H; Liu R; Xu L; Chen Z
    Mol Biotechnol; 2011 Jan; 47(1):9-17. PubMed ID: 20589456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of suspension adapted Vero cell culture process technology for production of viral vaccines.
    Shen CF; Guilbault C; Li X; Elahi SM; Ansorge S; Kamen A; Gilbert R
    Vaccine; 2019 Nov; 37(47):6996-7002. PubMed ID: 31288997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of p21cip1 in adaptation of CHO cells to suspension and protein-free culture.
    Astley K; Naciri M; Racher A; Al-Rubeai M
    J Biotechnol; 2007 Jun; 130(3):282-90. PubMed ID: 17544163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of cell adaptation to serum-free conditions on the glycosylation profile of a monoclonal antibody produced by Chinese hamster ovary cells.
    Costa AR; Withers J; Rodrigues ME; McLoughlin N; Henriques M; Oliveira R; Rudd PM; Azeredo J
    N Biotechnol; 2013 Jun; 30(5):563-72. PubMed ID: 23247406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation of CHO cells in serum-free conditions for erythropoietin production: Application of EVOP technique for process optimization.
    Jukić S; Bubenik D; Pavlović N; Tušek AJ; Srček VG
    Biotechnol Appl Biochem; 2016 Sep; 63(5):633-641. PubMed ID: 26661088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer fraction including exosomes derived from Chinese hamster ovary cells promoted their growth during serum-free repeated batch culture.
    Takagi M; Jimbo S; Oda T; Goto Y; Fujiwara M
    J Biosci Bioeng; 2021 Feb; 131(2):183-189. PubMed ID: 33051156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances and drawbacks of the adaptation to serum-free culture of CHO-K1 cells for monoclonal antibody production.
    Rodrigues ME; Costa AR; Henriques M; Cunnah P; Melton DW; Azeredo J; Oliveira R
    Appl Biochem Biotechnol; 2013 Feb; 169(4):1279-91. PubMed ID: 23306891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a serum-free medium for the production of erythropoietin by suspension culture of recombinant Chinese hamster ovary cells using a statistical design.
    Lee GM; Kim EJ; Kim NS; Yoon SK; Ahn YH; Song JY
    J Biotechnol; 1999 Apr; 69(2-3):85-93. PubMed ID: 10361720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic effects of basic fibroblast growth factor and insulin on Chinese hamster ovary cells under serum-free conditions.
    Liu CH; Wu KW
    J Biosci Bioeng; 2009 Mar; 107(3):312-7. PubMed ID: 19269599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable expression of recombinant human coagulation factor XIII in protein-free suspension culture of Chinese hamster ovary cells.
    Chun BH; Bang WG; Park YK; Woo SK
    Cytotechnology; 2001 Nov; 37(3):179-87. PubMed ID: 19002921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of iron addition on mAb productivity and oxidative stress in Chinese hamster ovary culture.
    Graham RJ; Mohammad A; Liang G; Fu Q; Kuang B; Polanco A; Lee YS; Marcus RK; Yoon S
    Biotechnol Prog; 2021 Sep; 37(5):e3181. PubMed ID: 34106525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.