BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 33864457)

  • 1. Improving the design of an oxidative stress sensing biosensor in yeast.
    Dacquay LC; McMillen DR
    FEMS Yeast Res; 2021 May; 21(4):. PubMed ID: 33864457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered Saccharomyces cerevisiae strain BioS-OS1/2, for the detection of oxidative stress.
    Jayaraman M; Radhika V; Bamne MN; Ramos R; Briggs R; Dhanasekaran DN
    Biotechnol Prog; 2005; 21(5):1373-9. PubMed ID: 16209540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding the Dynamic Range of a Transcription Factor-Based Biosensor in
    Dabirian Y; Li X; Chen Y; David F; Nielsen J; Siewers V
    ACS Synth Biol; 2019 Sep; 8(9):1968-1975. PubMed ID: 31373795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering transcription factor-based biosensors for repressive regulation through transcriptional deactivation design in Saccharomyces cerevisiae.
    Qiu C; Chen X; Rexida R; Shen Y; Qi Q; Bao X; Hou J
    Microb Cell Fact; 2020 Jul; 19(1):146. PubMed ID: 32690010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering an NADPH/NADP
    Zhang J; Sonnenschein N; Pihl TP; Pedersen KR; Jensen MK; Keasling JD
    ACS Synth Biol; 2016 Dec; 5(12):1546-1556. PubMed ID: 27419466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an Haa1-based biosensor for acetic acid sensing in Saccharomyces cerevisiae.
    Mormino M; Siewers V; Nygård Y
    FEMS Yeast Res; 2021 Sep; 21(6):. PubMed ID: 34477863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Characterization of Biosensors for the Screening of Modular Assembled Naringenin Biosynthetic Library in
    Wang R; Cress BF; Yang Z; Hordines JC; Zhao S; Jung GY; Wang Z; Koffas MAG
    ACS Synth Biol; 2019 Sep; 8(9):2121-2130. PubMed ID: 31433622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and characterization of AND-gate dynamic controllers with a modular synthetic GAL1 core promoter in Saccharomyces cerevisiae.
    Teo WS; Chang MW
    Biotechnol Bioeng; 2014 Jan; 111(1):144-51. PubMed ID: 23860786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome-wide differences between Saccharomyces cerevisiae and Saccharomyces cerevisiae var. boulardii: Clues on host survival and probiotic activity based on promoter sequence variability.
    Pais P; Oliveira J; Almeida V; Yilmaz M; Monteiro PT; Teixeira MC
    Genomics; 2021 Mar; 113(2):530-539. PubMed ID: 33482324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae.
    Kim S; Lee K; Bae SJ; Hahn JS
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2705-14. PubMed ID: 25573467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Prokaryotic Transcriptional Activator XylR as a Xylose-Inducible Biosensor for Transcription Activation in Yeast.
    Wei W; Shang Y; Zhang P; Liu Y; You D; Yin B; Ye B
    ACS Synth Biol; 2020 May; 9(5):1022-1029. PubMed ID: 32268060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of the YAP1, PDE2, and STB3 genes enhances the tolerance of yeast to oxidative stress induced by 7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine.
    Drobna E; Gazdag Z; Culakova H; Dzugasova V; Gbelska Y; Pesti M; Subik J
    FEMS Yeast Res; 2012 Dec; 12(8):958-68. PubMed ID: 22909133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae.
    Nguyen TT; Iwaki A; Ohya Y; Izawa S
    J Biosci Bioeng; 2014 Jan; 117(1):33-8. PubMed ID: 23850265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Resolution Scanning of Optimal Biosensor Reporter Promoters in Yeast.
    Ambri F; D'Ambrosio V; Di Blasi R; Maury J; Jacobsen SAB; McCloskey D; Jensen MK; Keasling JD
    ACS Synth Biol; 2020 Feb; 9(2):218-226. PubMed ID: 31935067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, Engineering, and Characterization of Prokaryotic Ligand-Binding Transcriptional Activators as Biosensors in Yeast.
    Ambri F; Snoek T; Skjoedt ML; Jensen MK; Keasling JD
    Methods Mol Biol; 2018; 1671():269-290. PubMed ID: 29170965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters.
    Blazeck J; Garg R; Reed B; Alper HS
    Biotechnol Bioeng; 2012 Nov; 109(11):2884-95. PubMed ID: 22565375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Saccharomyces cerevisiae-based biosensors for copper detection.
    Fan C; Zhang D; Mo Q; Yuan J
    Microb Biotechnol; 2022 Nov; 15(11):2854-2860. PubMed ID: 35829650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosensors design in yeast and applications in metabolic engineering.
    Qiu C; Zhai H; Hou J
    FEMS Yeast Res; 2019 Dec; 19(8):. PubMed ID: 31778177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating transcription through development of semi-synthetic yeast core promoters.
    Decoene T; De Maeseneire SL; De Mey M
    PLoS One; 2019; 14(11):e0224476. PubMed ID: 31689317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A combinatorial approach to synthetic transcription factor-promoter combinations for yeast strain engineering.
    Dossani ZY; Reider Apel A; Szmidt-Middleton H; Hillson NJ; Deutsch S; Keasling JD; Mukhopadhyay A
    Yeast; 2018 Mar; 35(3):273-280. PubMed ID: 29084380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.