These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 33864457)

  • 21. Yeast Synthetic Minimal Biosensors for Evaluating Protein Production.
    Peng K; Kroukamp H; Pretorius IS; Paulsen IT
    ACS Synth Biol; 2021 Jul; 10(7):1640-1650. PubMed ID: 34126009
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a synthetic transcription factor-based S-adenosylmethionine biosensor in Saccharomyces cerevisiae.
    Chen Y; Zheng H; Yang J; Cao Y; Zhou H
    Biotechnol Lett; 2023 Feb; 45(2):255-262. PubMed ID: 36550338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress.
    Menezes RA; Amaral C; Batista-Nascimento L; Santos C; Ferreira RB; Devaux F; Eleutherio EC; Rodrigues-Pousada C
    Biochem J; 2008 Sep; 414(2):301-11. PubMed ID: 18439143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering Modular Biosensors to Confer Metabolite-Responsive Regulation of Transcription.
    Younger AK; Dalvie NC; Rottinghaus AG; Leonard JN
    ACS Synth Biol; 2017 Feb; 6(2):311-325. PubMed ID: 27744683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The plant transcription factor TGA1 stimulates expression of the CaMV 35S promoter in Saccharomyces cerevisiae.
    Rüth J; Schweyen RJ; Hirt H
    Plant Mol Biol; 1994 May; 25(2):323-8. PubMed ID: 8018880
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coordinated transcription factor and promoter engineering to establish strong expression elements in Saccharomyces cerevisiae.
    Leavitt JM; Tong A; Tong J; Pattie J; Alper HS
    Biotechnol J; 2016 Jul; 11(7):866-76. PubMed ID: 27152757
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Profiling of Saccharomyces cerevisiae transcription factors for engineering the resistance of yeast to lignocellulose-derived inhibitors in biomass conversion.
    Wu G; Xu Z; Jönsson LJ
    Microb Cell Fact; 2017 Nov; 16(1):199. PubMed ID: 29137634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae.
    Naseri G; Balazadeh S; Machens F; Kamranfar I; Messerschmidt K; Mueller-Roeber B
    ACS Synth Biol; 2017 Sep; 6(9):1742-1756. PubMed ID: 28531348
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.
    Hubmann G; Thevelein JM; Nevoigt E
    Methods Mol Biol; 2014; 1152():17-42. PubMed ID: 24744025
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcription-Factor-based Biosensor Engineering for Applications in Synthetic Biology.
    Ding N; Zhou S; Deng Y
    ACS Synth Biol; 2021 May; 10(5):911-922. PubMed ID: 33899477
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A yeast optogenetic toolkit (yOTK) for gene expression control in Saccharomyces cerevisiae.
    An-Adirekkun JM; Stewart CJ; Geller SH; Patel MT; Melendez J; Oakes BL; Noyes MB; McClean MN
    Biotechnol Bioeng; 2020 Mar; 117(3):886-893. PubMed ID: 31788779
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The essential protein fap7 is involved in the oxidative stress response of Saccharomyces cerevisiae.
    Juhnke H; Charizanis C; Latifi F; Krems B; Entian KD
    Mol Microbiol; 2000 Feb; 35(4):936-48. PubMed ID: 10692169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Yap1 activation by H2O2 or thiol-reactive chemicals elicits distinct adaptive gene responses.
    Ouyang X; Tran QT; Goodwin S; Wible RS; Sutter CH; Sutter TR
    Free Radic Biol Med; 2011 Jan; 50(1):1-13. PubMed ID: 20971184
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering of synthetic, stress-responsive yeast promoters.
    Rajkumar AS; Liu G; Bergenholm D; Arsovska D; Kristensen M; Nielsen J; Jensen MK; Keasling JD
    Nucleic Acids Res; 2016 Sep; 44(17):e136. PubMed ID: 27325743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression studies and promoter analysis of the nuclear gene for mitochondrial transcription factor 1 (MTF1) in yeast.
    Jan PS; Stein T; Hehl S; Lisowsky T
    Curr Genet; 1999 Aug; 36(1-2):37-48. PubMed ID: 10447593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae.
    Morgan BA; Banks GR; Toone WM; Raitt D; Kuge S; Johnston LH
    EMBO J; 1997 Mar; 16(5):1035-44. PubMed ID: 9118942
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fundamental Design Principles for Transcription-Factor-Based Metabolite Biosensors.
    Mannan AA; Liu D; Zhang F; Oyarzún DA
    ACS Synth Biol; 2017 Oct; 6(10):1851-1859. PubMed ID: 28763198
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using a Design of Experiments Approach to Inform the Design of Hybrid Synthetic Yeast Promoters.
    Gilman J; Zulkower V; Menolascina F
    Methods Mol Biol; 2021; 2189():1-17. PubMed ID: 33180289
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineered Biosensors from Dimeric Ligand-Binding Domains.
    Jester BW; Tinberg CE; Rich MS; Baker D; Fields S
    ACS Synth Biol; 2018 Oct; 7(10):2457-2467. PubMed ID: 30204430
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Natural promoters and promoter engineering strategies for metabolic regulation in Saccharomyces cerevisiae.
    He S; Zhang Z; Lu W
    J Ind Microbiol Biotechnol; 2023 Feb; 50(1):. PubMed ID: 36633543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.