These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 33864793)

  • 41. Pseudocapacitive Coating for Effective Capacitive Deionization.
    Li M; Park HG
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2442-2450. PubMed ID: 29272105
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An experimental approach to treat salt and dye contaminated water via capacitive deionization.
    Maheshwari K; Dohare R; Agarwal M
    Water Sci Technol; 2022 Dec; 86(11):2987-2998. PubMed ID: 36515201
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Na
    Cao J; Wang Y; Wang L; Yu F; Ma J
    Nano Lett; 2019 Feb; 19(2):823-828. PubMed ID: 30658040
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficiency Enhancement of Electro-Adsorption Desalination Using Iron Oxide Nanoparticle-Incorporated Activated Carbon Nanocomposite.
    Yasin AS; Mohamed AY; Kim D; Yoon S; Ra H; Lee K
    Micromachines (Basel); 2021 Sep; 12(10):. PubMed ID: 34683201
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In situ spatially and temporally resolved measurements of salt concentration between charging porous electrodes for desalination by capacitive deionization.
    Suss ME; Biesheuvel PM; Baumann TF; Stadermann M; Santiago JG
    Environ Sci Technol; 2014; 48(3):2008-15. PubMed ID: 24433022
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Three-dimensional cubic ordered mesoporous carbon with chitosan for capacitive deionization disinfection of water.
    Cao C; Wu X; Zheng Y; Chen Y
    Environ Sci Pollut Res Int; 2020 May; 27(13):15001-15010. PubMed ID: 32067173
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Using mesoporous carbon electrodes for brackish water desalination.
    Zou L; Li L; Song H; Morris G
    Water Res; 2008 Apr; 42(8-9):2340-8. PubMed ID: 18222527
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Self similarities in desalination dynamics and performance using capacitive deionization.
    Ramachandran A; Hemmatifar A; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2018 Sep; 140():323-334. PubMed ID: 29734040
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Selective capture of ammonium ions from municipal wastewater treatment plant effluent with a nickel hexacyanoferrate electrode.
    Tsai SW; Cuong DV; Hou CH
    Water Res; 2022 Aug; 221():118786. PubMed ID: 35779455
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Selective Ammonium Removal from Synthetic Wastewater by Flow-Electrode Capacitive Deionization Using a Novel K
    Lin L; Hu J; Liu J; He X; Li B; Li XY
    Environ Sci Technol; 2020 Oct; 54(19):12723-12731. PubMed ID: 32926784
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes.
    Cho Y; Yoo CY; Lee SW; Yoon H; Lee KS; Yang S; Kim DK
    Water Res; 2019 Mar; 151():252-259. PubMed ID: 30605773
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation of a Polypyrrole/Graphene Oxide Composite Electrode by Electrochemical Codeposition for Capacitor Deionization.
    Xue J; Sun Q; Zhang Y; Mao W; Li F; Yin C
    ACS Omega; 2020 May; 5(19):10995-11004. PubMed ID: 32455220
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sulfur-Doped Binary Layered Metal Oxides Incorporated on Pomegranate Peel-Derived Activated Carbon for Removal of Heavy Metal Ions.
    Jume BH; Valizadeh Dana N; Rastin M; Parandi E; Darajeh N; Rezania S
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36557973
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation of MOF/polypyrrole and flower-like MnO
    Kang H; Zhang D; Chen X; Zhao H; Yang D; Li Y; Bao M; Wang Z
    Water Res; 2023 Feb; 229():119441. PubMed ID: 36470045
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced capacitive removal of hardness ions by hierarchical porous carbon cathode with high mesoporosity and negative surface charges.
    Nie P; Shang X; Hu B; Hussain T; Yang J; Huang M; Liu J
    J Colloid Interface Sci; 2022 Apr; 612():277-286. PubMed ID: 34995864
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nano-manganese oxide and reduced graphene oxide-incorporated polyacrylonitrile fiber mats as an electrode material for capacitive deionization (CDI) technology.
    Siriwardane IW; Rathuwadu NPW; Dahanayake D; Sandaruwan C; de Silva RM; de Silva KMN
    Nanoscale Adv; 2021 May; 3(9):2585-2597. PubMed ID: 36134151
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Perfect divalent cation selectivity with capacitive deionization.
    Uwayid R; Guyes EN; Shocron AN; Gilron J; Elimelech M; Suss ME
    Water Res; 2022 Feb; 210():117959. PubMed ID: 34942526
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Activated Carbon Blended with Reduced Graphene Oxide Nanoflakes for Capacitive Deionization.
    Folaranmi G; Bechelany M; Sistat P; Cretin M; Zaviska F
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33922448
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selective Pseudocapacitive Deionization of Calcium Ions in Copper Hexacyanoferrate.
    Xu Y; Zhou H; Wang G; Zhang Y; Zhang H; Zhao H
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41437-41445. PubMed ID: 32820894
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications.
    Seo SJ; Jeon H; Lee JK; Kim GY; Park D; Nojima H; Lee J; Moon SH
    Water Res; 2010 Apr; 44(7):2267-75. PubMed ID: 19897222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.